切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2015, Vol. 02 ›› Issue (03) : 147 -151. doi: 10.3877/cma.j.issn.2095-8773.2015.03.002

所属专题: 文献

综述

肿瘤相关microRNAs的研究进展
杨洋1, 孙益峰1, 高文1,()   
  1. 1. 200030 上海交通大学附属胸科医院胸外科
  • 收稿日期:2015-05-25 出版日期:2015-08-28
  • 通信作者: 高文

Research progress of cancer-related microRNAs

Yang Yang1, Yifeng Sun1, Wen Gao1,()   

  1. 1. Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
  • Received:2015-05-25 Published:2015-08-28
  • Corresponding author: Wen Gao
  • About author:
    Corresponding author: Gao Wen, Email:
引用本文:

杨洋, 孙益峰, 高文. 肿瘤相关microRNAs的研究进展[J/OL]. 中华胸部外科电子杂志, 2015, 02(03): 147-151.

Yang Yang, Yifeng Sun, Wen Gao. Research progress of cancer-related microRNAs[J/OL]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2015, 02(03): 147-151.

微小RNA(miRNAs)为小分子非编码单链RNA片段,约22~24个核苷酸长度,通过与绑定的mRNA 3’端非翻译区的碱基配对调控mRNAs的翻译和降解,在基因表达的转录后调控中发挥功能。miRNAs可参与生命过程中的一系列重要进程,包括早期胚胎发育、细胞增殖、细胞凋亡,甚至可通过miRNAs途径调节干细胞的分化。异常miRNAs表达与肿瘤等许多疾病密切相关,自2002年首先发现miRNAs表达异常与肿瘤有关以来,关于miRNAs在肿瘤发生和耐药产生中的重要作用得到了迅速的发展。然而,全面认识了解miRNAs及其与人类肿瘤的关系仍有很长的路要走。该文简要对miRNAs生物起源以及在肿瘤发生和耐药性形成中的作用进行综述,阐述了miRNAs作为分子标志物或者新型的治疗手段在肿瘤治疗中的作用。

MicroRNAs (miRNAs) are a family of small non-coding RNAs with a length of 22 to 24 nucleotides, involved in post transcriptional regulation of gene expression through a complementary matching with the 3’ untranslated regions of target mRNAs, leading to either mRNA degradation or translational repression. miRNAs play an important role in all biological processes such as embryogenesis, cell proliferation, apoptosis and even in stem cell differentiation. Aberrant miRNAs expression is associated with many diseases including cancer. The key role which miRNAs play in cancer development and drug resistance has been investigated quickly since the first connection between cancer and miRNAs deregulation was discovered in the year of 2002. However, there is still a long way to fully understand the world of miRNAs. In this review, miRNAs biogenesis and role of miRNAs in cancer development and drug resistance are introduced, and how miRNAs can be used as biomarkers and as a novel therapeutic approach in cancer is described.

[1]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854.
[2]
Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772): 901-906.
[3]
Lagos-Quintana M, Rauhut R, Lendeckel W, et al. Identification of novel genes coding for small expressed RNAs[J]. Science, 2001, 294(5543): 853-858.
[4]
Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233.
[5]
Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci U S A, 2002, 99(24): 15524-15529.
[6]
Croce CM. Causes and consequences of microRNA dysregulation in cancer[J]. Nat Rev Genet, 2009, 10(10): 704-714.
[7]
Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis[J]. Br J Cancer, 2006, 94(6): 776-780.
[8]
Baranwal S, Alahari SK. miRNA control of tumor cell invasion and metastasis[J]. Int J Cancer, 2010, 126(6): 1283-1290.
[9]
Heinrich EM, Dimmeler S. MicroRNAs and stem cells control of pluripotency, reprogramming, and lineage commitment[J]. Circ Res, 2012, 110(7): 1014-1022.
[10]
Rosenfeld N, Aharonov R, Meiri E, et al. MicroRNAs accurately identify cancer tissue origin[J]. Nat Biotechnol, 2008, 26(4): 462-469.
[11]
Ma J, Dong C, Ji C. MicroRNA and drug resistance[J]. Cancer Gene Ther, 2010, 17(8): 523-531.
[12]
Martina Redova, Jiri Sana, Ondrej Slaby. Circulating miRNAs as new blood-based biomarkers for solid cancers[J]. Future Oncol, 2013, 9(3): 387-402.
[13]
Bader AG, Brown D, Stoudemire J, et al. Developing therapeutic microRNAs for cancer[J]. Gene Ther, 2011, 18(12): 1121-1126.
[14]
Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ[J]. EMBO J, 2004, 23(20): 4051-4060.
[15]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
[16]
Sun Y, Chen C, Zhang P, et al. Reduced miR-3127-5p expression promotes NSCLC proliferation/invasion and contributes to dasatinib sensitivity via the c-Abl/Ras/ERK pathway[J]. Sci Rep, 2014, 4: 6527.
[17]
Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers[J]. Proc Natl Acad Sci U S A, 2004, 101(9): 2999-3004.
[18]
Merritt WM, Lin YG, Han LY, et al. Dicer, Drosha, and outcomes in patients with ovarian cancer[J]. N Engl J Med, 2008, 359(25): 2641-2650.
[19]
Fabbri M, Calore F, Paone A, et al. Epigenetic regulation of miRNAs in cancer[J]. Adv Exp Med Biol, 2013, 754: 137-148.
[20]
Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells[J]. Cancer Cell, 2006, 9(6): 435-443.
[21]
Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B[J]. Proc Natl Acad Sci U S A, 2007, 104(40): 15805-15810.
[22]
O'Donnell KA, Wentzel EA, Zeller KI, et al. c-Myc-regulated microRNAs modulate E2F1 expression[J]. Nature, 2005, 435(7043): 839-843.
[23]
Corney DC, Flesken-Nikitin A, Godwin AK, et al. MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth[J]. Cancer Res, 2007, 67(18): 8433-8438.
[24]
Acunzo M, Romano G, Palmieri D, et al. Cross-talk between MET and EGFR in non-small cell lung cancer involves miR-27a and Sprouty2[J]. Proc Natl Acad Sci U S A, 2013, 110(21): 8573-8578.
[25]
Liang Z, Li Y, Huang K, et al. Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN[J]. Pharm Res, 2011, 28(12): 3091-3100.
[26]
Shi GH, Ye DW, Yao XD, et al. Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells[J]. Acta Pharmacol Sin, 2010, 31(7): 867-873.
[27]
Garofalo M, Di Leva G, Romano G, et al. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 down regulation[J]. Cancer Cell, 2009, 16(6): 498-509.
[28]
Acunzo M, Visone R, Romano G, et al. miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222[J]. Oncogene, 2012, 31(5): 634-642.
[29]
Bao L, Hazari S, Mehra S, et al. Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298[J]. Am J Pathol, 2012, 180(6): 2490-2503.
[30]
Zhu H, Wu H, Liu X, et al. Role of microRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells[J]. Biochem Pharmacol, 2008, 76(5): 582-588.
[31]
Zhu X, Li H, Long L, et al. miR-126 enhances the sensitivity of non-small cell lung cancer cells to anticancer agents by targeting vascular endothelial growth factor A[J]. Acta Biochim Biophys Sin, 2012, 44(6): 519-526.
[32]
Romano G, Acunzo M, Garofalo M, et al. MiR-494 is regulated by ERK1/2 and modulates TRAIL induced apoptosis in non-small-cell lung cancer through BIM down-regulation[J]. Proc Natl Acad Sci U S A, 2012, 109(41): 16570-16575.
[33]
Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets[J]. Proc Natl Acad Sci U S A, 2006, 103(7): 2257-2261.
[34]
Pencheva N, Tavazoie SF. Control of metastatic progression by microRNA regulatory networks[J]. Nat Cell Biol, 2013, 15(6): 546-554.
[35]
Png KJ, Halberg N, Yoshida M, et al. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells[J]. Nature, 2011, 481(7380): 190-194.
[36]
Drusco A, Nuovo GJ, Zanesi N, et al. MicroRNA profiles discriminate among colon cancer metastasis[J]. PLoS One, 2014, 9(6): e96670.
[37]
Scholl V, Hassan R, Zalcberg IR. miRNA-451: a putative predictor marker of Imatinib therapy response in chronic myeloid leukemia[J]. Leuk Res, 2012, 36(1): 119-121.
[38]
Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease?[J] Circ Res, 2012, 110(3): 483-495.
[39]
Chen X, Hu Z, Wang W, et al. Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel non-invasive biomarkers for non-small cell lung cancer diagnosis[J]. Int J Cancer, 2012, 130(7): 1620-1628.
[40]
Lagana A, Acunzo M, Romano G, et al. miR-Synth: a computational resource for the design of multi-site multi-target synthetic miRNAs[J]. Nucleic Acids Res, 2014, 42(9): 5416-5425.
[41]
Choi KY, Silvestre OF, Huang XL, et al. A nanoparticle formula for delivering siRNA or miRNAs to tumor cells in cell culture and in vivo[J]. Nat Protoc, 2014, 9(8): 1900-1915.
[1] 李国新, 陈新华. 全腹腔镜下全胃切除术食管空肠吻合的临床研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 1-4.
[2] 陈方鹏, 杨大伟, 金从稳. 腹腔镜近端胃癌切除术联合改良食管胃吻合术重建His角对术后反流性食管炎的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 15-18.
[3] 许杰, 李亚俊, 韩军伟. 两种入路下腹腔镜根治性全胃切除术治疗超重胃癌的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 19-22.
[4] 李刘庆, 陈小翔, 吕成余. 全腹腔镜与腹腔镜辅助远端胃癌根治术治疗进展期胃癌的近中期随访比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 23-26.
[5] 刘世君, 马杰, 师鲁静. 胃癌完整系膜切除术+标准D2根治术治疗进展期胃癌的近中期随访研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 27-30.
[6] 任佳, 马胜辉, 王馨, 石秀霞, 蔡淑云. 腹腔镜全胃切除、间置空肠代胃术的临床观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 31-34.
[7] 赵丽霞, 王春霞, 陈一锋, 胡东平, 张维胜, 王涛, 张洪来. 内脏型肥胖对腹腔镜直肠癌根治术后早期并发症的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 35-39.
[8] 吴晖, 佴永军, 施雪松, 魏晓为. 两种解剖入路下行直肠癌侧方淋巴结清扫的效果比较[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 40-43.
[9] 周世振, 朱兴亚, 袁庆港, 刘理想, 王凯, 缪骥, 丁超, 汪灏, 管文贤. 吲哚菁绿荧光成像技术在腹腔镜直肠癌侧方淋巴结清扫中的应用效果分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 44-47.
[10] 常小伟, 蔡瑜, 赵志勇, 张伟. 高强度聚焦超声消融术联合肝动脉化疗栓塞术治疗原发性肝细胞癌的效果及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 56-59.
[11] 高杰红, 黎平平, 齐婧, 代引海. ETFA和CD34在乳腺癌中的表达及与临床病理参数和预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 64-67.
[12] 徐逸男. 不同术式治疗梗阻性左半结直肠癌的疗效观察[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 72-75.
[13] 王露, 周丽君. 全腹腔镜下远端胃大部切除不同吻合方式对胃癌患者胃功能恢复、并发症发生率的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 92-95.
[14] 李代勤, 刘佩杰. 动态增强磁共振评估中晚期低位直肠癌同步放化疗后疗效及预后的价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 100-103.
[15] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?