切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2018, Vol. 05 ›› Issue (01) : 47 -52. doi: 10.3877/cma.j.issn.2095-8773.2018.01.10

所属专题: 文献

综述

可吸收肋骨内固定装置的研究现状
王宇飞1, 郭占林1,()   
  1. 1. 010050 呼和浩特,内蒙古医科大学附属医院胸外科
  • 收稿日期:2017-05-10 出版日期:2018-02-28
  • 通信作者: 郭占林
  • 基金资助:
    内蒙古自治区科技计划项目(kjt15sf02)

Research on rib internal fixation materials that can be absorbed

Yufei Wang1, Zhanlin Guo1,()   

  1. 1. Department of Thoracic Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
  • Received:2017-05-10 Published:2018-02-28
  • Corresponding author: Zhanlin Guo
  • About author:
    Corresponding author: Guo Zhanlin, Email:
引用本文:

王宇飞, 郭占林. 可吸收肋骨内固定装置的研究现状[J]. 中华胸部外科电子杂志, 2018, 05(01): 47-52.

Yufei Wang, Zhanlin Guo. Research on rib internal fixation materials that can be absorbed[J]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2018, 05(01): 47-52.

多处肋骨骨折会导致胸腔变形,影响呼吸功能而需要手术固定。金属类固定装置力学性能好但需要二次手术移除,因此,可吸收类的内部肋骨固定材料受到越来越多的关注和使用。常用的可吸收装置一般由聚合物或者合金制成,其中聚左旋乳酸(PLLA)应用最为广泛,其降解速度和强度可以通过调节几种聚合物的比例控制;可降解类金属材料则可通过加入金属调控。继续改进和开发新的骨固定类装置的特性仍是可降解类材料未来发展的趋势之一。

Rib fractures may cause chest deformation and respiratory distress. Internal fixation with metals are widely used for their high mechanical strength and easy operation. However, it needs surgical removal. Bio-absorbable materials such as polymer and alloy raise more and more attentions. Poly-L-lactide (PLLA) is one that has been widely used. Degradation rate and strength of bio-absorbable polymers or alloys can be adjusted by their percentage. Improving and developing new biodegradable materials will still be the research focus.

表1 临床所用内部固定骨材料的性能比较
表2 常用的高分子可吸收材料及其组成
表3 临床常用的几种肋骨固定装置
1
Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices [J]. Biomaterials, 2000,21(23):2335-2346.
2
Vihtonen K. Fixation of rabbit osteotomies with biodegradable polyglycolic acid thread[J]. Acta Orthop Scand 1988, 59(3): 279-283.
3
Vihtonen K, Vainionpaa S, Mero M, et al. Fixation of experimental osteotomies of the distal femur in rabbits with bone cement and cyanoacrylate[J]. Arch Orthop Trauma Surg, 1986, 105(3):133-136.
4
Plaga BR, Royster RM, Donigian AM, et al. Fixation of osteochon-dral fractures in rabbit knees. A comparison of Kirschner wires, fibrin sealant, and polydioxanone pins[J]. J Bone Joint Surg Br, 1992,74(2): 292-296.
5
Beiser IH, Kanat IO. Biodegradable internal fixation. A literature review[J]. J Am Podiatr Med Assoc, 1990, 80(2): 72-75.
6
Bondarenko A, Angrisani N, Meyer-Lindenberg A, et al. Magnesium-based bone implants: immunohistochemical analysis of peri-implant osteogenesis by evaluation of osteopontin and osteocalcin expression[J]. J Biomed Mater Res A, 2014,102(5):1449-1457.
7
Reifenrath J, Angrisani N, Erdmann N, et al. Degrading magnesium screws ZEK100: biomechanical testing, degradation analysis and soft-tissue biocompatibility in a rabbit model[J]. Biomed Mater, 2013, 8(4): 045012.
8
Seitz JM, Durisin M, Goldman J, et al. Recent advances in biodegradable metals for medical sutures: a critical review[J]. Adv Healthc Mater, 2015, 4(13):1915-1936.
9
Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study[J]. BioMed Eng Online, 2013, 12: 62.
10
Shi C, Pu X, Zheng G, et al. An antibacterial and absorbable silk-based fixation material with impressive mechanical properties and biocompatibility[J]. Sci Rep, 2016, 6: 37418.
11
Thormann U, Alt V, Heimann L, et al. The biocompatibility of degradable magnesium interference screws: an experimental study with sheep[J]. BioMed Res In, 2015: 943603.
12
Huang KN, Xu ZF, Sun JX,et al. Stabilization of multiple rib fractures in a canine model[J]. J Surg Res,2014,192(2): 621-627.
13
Al Salamah L, Babay N, Anil S, et al. Guided bone regeneration using resorbable and non-resorbable membranes: a histological study in dogs[J]. Odontostomatol Trop, 2012, 35(138): 43-50.
14
Hamada Y, Fujitani W, Kawaguchi N, et al. The preparation of PLLA/calcium phosphate hybrid composite and its evaluation of biocompatibility[J]. Dent Mater J, 2012, 31(6): 1087-1096.
15
Chen CC, Chueh JY, Tseng H, et al. Preparation and characterization of biodegradable PLA polymeric blends[J]. Biomaterials, 2003, 24(7): 1167-1173.
16
Yang C, Unursaikhan O, Lee JS, et al. Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits[J]. J Biomed Mater Res B Appl Biomater, 2014, 102(1) : 80-88.
17
Zelen CM, Young NJ. Alternative methods in fixation for capital osteotomies in hallux valgus surgery[J]. Clin Podiatr Med Surg, 2013, 30(3): 295-306.
18
Sukegawa S, Kanno T, Nagano D, et al. The clinical feasibility of newly developed thin flat-type bioresorbable osteosynthesis devices for the internal fixation of zygomatic fractures: Is there a difference in healing between bioresorbable materials and titanium osteosynthesis?[J] J Craniofac Surg, 2016, 27(8): 2124-2129.
19
Rodriguez-Chessa J, Olate S, Netto HD, et al. In vitro resistance of titanium and resorbable (poly L-co-DL lactic acid) osteosynthesis in mandibular body fracture[J]. Int J Oral Maxillofac Surg, 2014, 43(3): 362-366.
20
Oyamatsu H, Ohata N, Narita K. New technique for fixing rib fracture with bioabsorbable plate[J]. Asian Cardiovasc Thorac Ann, 2016, 24(7): 736-738.
21
Hasegawa S, Ishii S, Tamura J, et al. A 5-7 year in vivo study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures[J]. Biomaterials, 2006, 27(8): 1327-1332.
22
Ya’ish F, Bailey CA, Kelly CP, et al. Bioabsorbable fixation of scaphoid fractures and non-unions; analysis of early clinical outcomes[J]. Hand Surg, 2013, 18(3):343-349.
23
Bostman O, Vainionpaa S, Hirvensalo E, et al. Biodegradable internal fixation for malleolar fractures: a prospective randomisedtrial[J]. J Bone Joint Surg Br, 1987, 69(4): 615-619.
24
Tormala P, Vainionpaa S, Kilpikari J, et al. The effects of fibre reinforcement and gold plating on the flexural and tensile strength of PGA/PLA copolymer materials in vitro[J]. Biomaterials, 1987, 8(1): 42-45.
25
Felfel RM, Ahmed I, Parsons AJ, et al. In vitro degradation, flexural, compressive and shear properties of fully bioresorbable composite rods[J]. J Mech Behav Biomed Mater, 2011,4(7): 1462-1472.
26
Shin SI, Herr Y, Kwon YH, et al. Effect of a collagen membrane combined with a porous titanium membrane on exophytic new bone formation in a rabbit calvarial model.[J] J Periodontol, 2013, 84(1): 110-116.
27
Annunziata M, Nastri L, Borgonovo A, et al. Poly-D-L-lactic acid membranes for bone regeneration[J]. J Craniofac Surg, 2015, 26(5): 1691-1696.
28
Arat A, Daglioglu E, Akmangit I, et al. Bioresorbable vascular scaffolds in interventional neuroradiology[J]. Clin Neuroradiol, 2017. doi: 10.1007/s00062-017-0609-5. Ahead of Print.
29
Athanasiou KA, Agrawal CM, Barber FA, et al. Orthopaedic applications for PLA-PGA biodegradable polymers[J]. Arthroscopy, 1998,14(7):726-737.
30
Eppley BL, Reilly M. Degradation characteristics of PLLA-PGA bone fixation devices[J]. J Craniofac Surg,1997, 8(2): 116-120.
31
Vergnol G, Ginsac N, Rivory P, et al. In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices[J]. J Biomed Mater Res B: Applied Biomater, 2016,104B(1): 180-191.
32
Kounis NG, Koniari I, Roumeliotis A, et al. Thrombotic responses to coronary stents, bioresorbable scaffolds and the Kounis hypersensitivity-associated acute thrombotic syndrome[J]. J Thorac Dis, 2017, 9(4):1155-1164.
33
Bostman OM. Intense granulomatous inflammatory lesions associated with absorbable internal fixation devices made of polyglycolide in ankle fractures[J]. Clin Orthop Relat Res, 1992, (278):193-199.
34
Nguyen DC, Woo AS, Farber SJ, et al. Comparison of resorbable plating systems: complications during degradation[J]. J Craniofac Surg, 2017, 28(1): 88-92.
35
Edwards RC, Kiely KD, Eppley BL. Resorbable PLLA-PGA screw fixation of mandibular sagittal split osteotomies[J]. J Craniofac Surg,1999,10(3):230-236.
36
Pietrzak WS. Heat adaptation of bioabsorbable craniofacial plates: a critical review of science and technology[J]. J Craniofac Surg, 2009, 20(6): 2180-2184.
37
Hutmacher DW. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials 2000, 21(24): 2529-2543.
38
Tashjian RZ, Kolz CW, Suter T, et al. Biomechanics of polyhydroxyalkanoate mesh-augmented single-row rotator cuff repairs[J]. Am J Orthop (Belle Mead NJ), 2016, 45(7): E527-E533.
39
Athanasiou KA, Agrawal CM, Barber FA, et al. Orthopaedic applications for PLA-PGA biodegradable polymers[J]. Arthroscopy,1998,14(7):726-737.
40
Böstman OM, Pihlajam?ki HK, Partio EK, et al. Clinical biocompatibility and degradation of polylevolactide screws in the ankle[J]. Clin Orthop Relat Res, 1995,(320):101-109.
41
Kim JS, Cho HK, Young KW, et al. Effectiveness of headless bioabsorbable screws for fixation of the scarf osteotomy[J]. Foot Ankle Int, 2016, 37(11): 1189-1196.
42
Bergsma JE, de Bruijn WC, Rozema FR, et al. Late degradation tissue response to poly(L-lactide) bone plates and screws[J]. Biomaterials 1995, 16(1): 25-31.
43
Berglund IS, Dirr EW, Ramaswamy V, et al. The effect of Mg-Ca-Sr alloy degradation products on human mesenchymal stem cells[J]. J Biomed Mater Res B Appl Biomater, 2018, 106(2):697-704.
44
Liu J, Zheng B, Wang P, et al. Enhanced in vitro and in vivo performance of Mg-Zn-Y-Nd alloy achieved with APTES pretreatment for drug-eluting vascular stent application[J]. ACS Appl Mater Interfaces, 2016, 8(28): 17842-17858.
45
Bose D, Eggebrecht H, Haude M, et al. First absorbable metal stent implantation in human coronary arteries[J]. Am Heart Hosp J, 2006, 4(2): 128-130.
46
Noh JH, Roh YH, Yang BG, et al. Outcomes of operative treatment of unstable ankle fractures: a comparison of metallic and biodegradable implants[J]. J Bone Joint Surg Am, 2012, 94(22): e166.
47
Leno MB, Liu SY, Chen CT, et al. Comparison of functional outcomes and patient-reported satisfaction between titanium and absorbable plates and screws for fixation of mandibular fractures: a one-year prospective study[J]. J Craniomaxillofac Surg, 2017, 45(5): 704-709.
48
Balestro JC, Young A, Maccioni C, et al. Graft osteolysis and recurrent instability after the Latarjet procedure performed with bioabsorbable screw fixation[J]. J Shoulder Elbow Surg, 2015, 24(5): 711-718.
49
Loubignac F, Lecuire F, Rubini J, et al. Troublesome radiologic changes after reconstructive fixation of the anterior cruciate ligament with resorbable interference screws[J]. Acta Orthop Belg, 1998, 64(1): 47-51.
50
Gonzalez-Lomas G, Cassilly RT, Remotti F, et al. Is the etiology of pretibial cyst formation after absorbable interference screw use related to a foreign body reaction? [J] Clin Orthop Relat Res, 2011, 469(4):1082-1088.
51
Van der Eng DM, Schep NW, Schepers T. Bioabsorbable versus metallic screw fixation for tibiofibular syndesmotic ruptures: a meta-analysis[J]. J Foot Ankle Surg, 2015, 54(4): 657-662.
52
Clanton TO, Betech AA, Bott AM, et al. Complications after tendon transfers in the foot and ankle using bioabsorbable screws[J]. Foot Ankle Int, 2013, 34(4): 486-490.
53
Zhang P, Wu H, Lu Z, et al. RGD-conjugated copolymer incorporated composite of poly(lactide-co-glycotide) and oly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering[J]. Biomacromolecules, 2011, 12(7): 2667-2680.
54
Lim LT, Tsuji H, Auras RA, et al. Poly (lactic acid): synthesis, structures, properties, processing, and applications[M]. Hoboken: Wiley, 2010.
55
Simon JA, Ricci JL, DiCesare PE. Bioresorbable fracture fixation in orthopaedics: a comprehensive review. Part I. Basic science and preclinical studies[J]. Am J Orthop, 1997, 26(10): 665-671.
56
Athanassiadi K, Kalavrouziotis G, Rondogianni D, et al. Primary chest wall tumors: early and long-term results of surgical treatment[J]. Eur J Cardiothorac Surg, 2001, 19(5): 589-593.
57
Coonar AS, Qureshi N, Smith I, et al. A novel titanium rib bridge system for chest wall reconstruction[J]. Ann Thorac Surg, 2009, 87(5): e46-e48.
58
Chai X, Lin Q, Ruan Z, et al. The clinical application of absorbable intramedullary nail and claw plate on treating multiple rib fractures[J]. Minerva Chir, 2013, 68(4): 415-420.
59
Lionelli GT, Korentager RA. Biomechanical failure of metacarpal fracture resorbable plate fixation[J]. Ann Plast Surg, 2002, 49(2): 202-206.
60
Nirula R, Diaz J Jr, Trunkey D, et al. Rib fracture repair: technical issues, and future directions[J]. World J Surg, 2009, 33(1):14-22.
[1] 姚丹, 郝岱峰, 赵帆. 可降解高分子材料在创面修复中的应用[J]. 中华损伤与修复杂志(电子版), 2017, 12(05): 382-388.
[2] 邵小夕, 王祥, 许方方, 戴太强, 刘斌, 刘彦普. 可降解骨折内固定物研究进展[J]. 中华口腔医学研究杂志(电子版), 2018, 12(05): 317-321.
[3] 朱辰, 徐烨, 钱文良, 丁琦晨, 郑敏. Matrix钛肋骨固定系统在连枷胸治疗中的应用[J]. 中华胸部外科电子杂志, 2015, 02(03): 188-191.
阅读次数
全文


摘要