1 |
Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices [J]. Biomaterials, 2000,21(23):2335-2346.
|
2 |
Vihtonen K. Fixation of rabbit osteotomies with biodegradable polyglycolic acid thread[J]. Acta Orthop Scand 1988, 59(3): 279-283.
|
3 |
Vihtonen K, Vainionpaa S, Mero M, et al. Fixation of experimental osteotomies of the distal femur in rabbits with bone cement and cyanoacrylate[J]. Arch Orthop Trauma Surg, 1986, 105(3):133-136.
|
4 |
Plaga BR, Royster RM, Donigian AM, et al. Fixation of osteochon-dral fractures in rabbit knees. A comparison of Kirschner wires, fibrin sealant, and polydioxanone pins[J]. J Bone Joint Surg Br, 1992,74(2): 292-296.
|
5 |
Beiser IH, Kanat IO. Biodegradable internal fixation. A literature review[J]. J Am Podiatr Med Assoc, 1990, 80(2): 72-75.
|
6 |
Bondarenko A, Angrisani N, Meyer-Lindenberg A, et al. Magnesium-based bone implants: immunohistochemical analysis of peri-implant osteogenesis by evaluation of osteopontin and osteocalcin expression[J]. J Biomed Mater Res A, 2014,102(5):1449-1457.
|
7 |
Reifenrath J, Angrisani N, Erdmann N, et al. Degrading magnesium screws ZEK100: biomechanical testing, degradation analysis and soft-tissue biocompatibility in a rabbit model[J]. Biomed Mater, 2013, 8(4): 045012.
|
8 |
Seitz JM, Durisin M, Goldman J, et al. Recent advances in biodegradable metals for medical sutures: a critical review[J]. Adv Healthc Mater, 2015, 4(13):1915-1936.
|
9 |
Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study[J]. BioMed Eng Online, 2013, 12: 62.
|
10 |
Shi C, Pu X, Zheng G, et al. An antibacterial and absorbable silk-based fixation material with impressive mechanical properties and biocompatibility[J]. Sci Rep, 2016, 6: 37418.
|
11 |
Thormann U, Alt V, Heimann L, et al. The biocompatibility of degradable magnesium interference screws: an experimental study with sheep[J]. BioMed Res In, 2015: 943603.
|
12 |
Huang KN, Xu ZF, Sun JX,et al. Stabilization of multiple rib fractures in a canine model[J]. J Surg Res,2014,192(2): 621-627.
|
13 |
Al Salamah L, Babay N, Anil S, et al. Guided bone regeneration using resorbable and non-resorbable membranes: a histological study in dogs[J]. Odontostomatol Trop, 2012, 35(138): 43-50.
|
14 |
Hamada Y, Fujitani W, Kawaguchi N, et al. The preparation of PLLA/calcium phosphate hybrid composite and its evaluation of biocompatibility[J]. Dent Mater J, 2012, 31(6): 1087-1096.
|
15 |
Chen CC, Chueh JY, Tseng H, et al. Preparation and characterization of biodegradable PLA polymeric blends[J]. Biomaterials, 2003, 24(7): 1167-1173.
|
16 |
Yang C, Unursaikhan O, Lee JS, et al. Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits[J]. J Biomed Mater Res B Appl Biomater, 2014, 102(1) : 80-88.
|
17 |
Zelen CM, Young NJ. Alternative methods in fixation for capital osteotomies in hallux valgus surgery[J]. Clin Podiatr Med Surg, 2013, 30(3): 295-306.
|
18 |
Sukegawa S, Kanno T, Nagano D, et al. The clinical feasibility of newly developed thin flat-type bioresorbable osteosynthesis devices for the internal fixation of zygomatic fractures: Is there a difference in healing between bioresorbable materials and titanium osteosynthesis?[J] J Craniofac Surg, 2016, 27(8): 2124-2129.
|
19 |
Rodriguez-Chessa J, Olate S, Netto HD, et al. In vitro resistance of titanium and resorbable (poly L-co-DL lactic acid) osteosynthesis in mandibular body fracture[J]. Int J Oral Maxillofac Surg, 2014, 43(3): 362-366.
|
20 |
Oyamatsu H, Ohata N, Narita K. New technique for fixing rib fracture with bioabsorbable plate[J]. Asian Cardiovasc Thorac Ann, 2016, 24(7): 736-738.
|
21 |
Hasegawa S, Ishii S, Tamura J, et al. A 5-7 year in vivo study of high-strength hydroxyapatite/poly(L-lactide) composite rods for the internal fixation of bone fractures[J]. Biomaterials, 2006, 27(8): 1327-1332.
|
22 |
Ya’ish F, Bailey CA, Kelly CP, et al. Bioabsorbable fixation of scaphoid fractures and non-unions; analysis of early clinical outcomes[J]. Hand Surg, 2013, 18(3):343-349.
|
23 |
Bostman O, Vainionpaa S, Hirvensalo E, et al. Biodegradable internal fixation for malleolar fractures: a prospective randomisedtrial[J]. J Bone Joint Surg Br, 1987, 69(4): 615-619.
|
24 |
Tormala P, Vainionpaa S, Kilpikari J, et al. The effects of fibre reinforcement and gold plating on the flexural and tensile strength of PGA/PLA copolymer materials in vitro[J]. Biomaterials, 1987, 8(1): 42-45.
|
25 |
Felfel RM, Ahmed I, Parsons AJ, et al. In vitro degradation, flexural, compressive and shear properties of fully bioresorbable composite rods[J]. J Mech Behav Biomed Mater, 2011,4(7): 1462-1472.
|
26 |
Shin SI, Herr Y, Kwon YH, et al. Effect of a collagen membrane combined with a porous titanium membrane on exophytic new bone formation in a rabbit calvarial model.[J] J Periodontol, 2013, 84(1): 110-116.
|
27 |
Annunziata M, Nastri L, Borgonovo A, et al. Poly-D-L-lactic acid membranes for bone regeneration[J]. J Craniofac Surg, 2015, 26(5): 1691-1696.
|
28 |
Arat A, Daglioglu E, Akmangit I, et al. Bioresorbable vascular scaffolds in interventional neuroradiology[J]. Clin Neuroradiol, 2017. doi: 10.1007/s00062-017-0609-5. Ahead of Print.
|
29 |
Athanasiou KA, Agrawal CM, Barber FA, et al. Orthopaedic applications for PLA-PGA biodegradable polymers[J]. Arthroscopy, 1998,14(7):726-737.
|
30 |
Eppley BL, Reilly M. Degradation characteristics of PLLA-PGA bone fixation devices[J]. J Craniofac Surg,1997, 8(2): 116-120.
|
31 |
Vergnol G, Ginsac N, Rivory P, et al. In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices[J]. J Biomed Mater Res B: Applied Biomater, 2016,104B(1): 180-191.
|
32 |
Kounis NG, Koniari I, Roumeliotis A, et al. Thrombotic responses to coronary stents, bioresorbable scaffolds and the Kounis hypersensitivity-associated acute thrombotic syndrome[J]. J Thorac Dis, 2017, 9(4):1155-1164.
|
33 |
Bostman OM. Intense granulomatous inflammatory lesions associated with absorbable internal fixation devices made of polyglycolide in ankle fractures[J]. Clin Orthop Relat Res, 1992, (278):193-199.
|
34 |
Nguyen DC, Woo AS, Farber SJ, et al. Comparison of resorbable plating systems: complications during degradation[J]. J Craniofac Surg, 2017, 28(1): 88-92.
|
35 |
Edwards RC, Kiely KD, Eppley BL. Resorbable PLLA-PGA screw fixation of mandibular sagittal split osteotomies[J]. J Craniofac Surg,1999,10(3):230-236.
|
36 |
Pietrzak WS. Heat adaptation of bioabsorbable craniofacial plates: a critical review of science and technology[J]. J Craniofac Surg, 2009, 20(6): 2180-2184.
|
37 |
Hutmacher DW. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials 2000, 21(24): 2529-2543.
|
38 |
Tashjian RZ, Kolz CW, Suter T, et al. Biomechanics of polyhydroxyalkanoate mesh-augmented single-row rotator cuff repairs[J]. Am J Orthop (Belle Mead NJ), 2016, 45(7): E527-E533.
|
39 |
Athanasiou KA, Agrawal CM, Barber FA, et al. Orthopaedic applications for PLA-PGA biodegradable polymers[J]. Arthroscopy,1998,14(7):726-737.
|
40 |
Böstman OM, Pihlajam?ki HK, Partio EK, et al. Clinical biocompatibility and degradation of polylevolactide screws in the ankle[J]. Clin Orthop Relat Res, 1995,(320):101-109.
|
41 |
Kim JS, Cho HK, Young KW, et al. Effectiveness of headless bioabsorbable screws for fixation of the scarf osteotomy[J]. Foot Ankle Int, 2016, 37(11): 1189-1196.
|
42 |
Bergsma JE, de Bruijn WC, Rozema FR, et al. Late degradation tissue response to poly(L-lactide) bone plates and screws[J]. Biomaterials 1995, 16(1): 25-31.
|
43 |
Berglund IS, Dirr EW, Ramaswamy V, et al. The effect of Mg-Ca-Sr alloy degradation products on human mesenchymal stem cells[J]. J Biomed Mater Res B Appl Biomater, 2018, 106(2):697-704.
|
44 |
Liu J, Zheng B, Wang P, et al. Enhanced in vitro and in vivo performance of Mg-Zn-Y-Nd alloy achieved with APTES pretreatment for drug-eluting vascular stent application[J]. ACS Appl Mater Interfaces, 2016, 8(28): 17842-17858.
|
45 |
Bose D, Eggebrecht H, Haude M, et al. First absorbable metal stent implantation in human coronary arteries[J]. Am Heart Hosp J, 2006, 4(2): 128-130.
|
46 |
Noh JH, Roh YH, Yang BG, et al. Outcomes of operative treatment of unstable ankle fractures: a comparison of metallic and biodegradable implants[J]. J Bone Joint Surg Am, 2012, 94(22): e166.
|
47 |
Leno MB, Liu SY, Chen CT, et al. Comparison of functional outcomes and patient-reported satisfaction between titanium and absorbable plates and screws for fixation of mandibular fractures: a one-year prospective study[J]. J Craniomaxillofac Surg, 2017, 45(5): 704-709.
|
48 |
Balestro JC, Young A, Maccioni C, et al. Graft osteolysis and recurrent instability after the Latarjet procedure performed with bioabsorbable screw fixation[J]. J Shoulder Elbow Surg, 2015, 24(5): 711-718.
|
49 |
Loubignac F, Lecuire F, Rubini J, et al. Troublesome radiologic changes after reconstructive fixation of the anterior cruciate ligament with resorbable interference screws[J]. Acta Orthop Belg, 1998, 64(1): 47-51.
|
50 |
Gonzalez-Lomas G, Cassilly RT, Remotti F, et al. Is the etiology of pretibial cyst formation after absorbable interference screw use related to a foreign body reaction? [J] Clin Orthop Relat Res, 2011, 469(4):1082-1088.
|
51 |
Van der Eng DM, Schep NW, Schepers T. Bioabsorbable versus metallic screw fixation for tibiofibular syndesmotic ruptures: a meta-analysis[J]. J Foot Ankle Surg, 2015, 54(4): 657-662.
|
52 |
Clanton TO, Betech AA, Bott AM, et al. Complications after tendon transfers in the foot and ankle using bioabsorbable screws[J]. Foot Ankle Int, 2013, 34(4): 486-490.
|
53 |
Zhang P, Wu H, Lu Z, et al. RGD-conjugated copolymer incorporated composite of poly(lactide-co-glycotide) and oly(L-lactide)-grafted nanohydroxyapatite for bone tissue engineering[J]. Biomacromolecules, 2011, 12(7): 2667-2680.
|
54 |
Lim LT, Tsuji H, Auras RA, et al. Poly (lactic acid): synthesis, structures, properties, processing, and applications[M]. Hoboken: Wiley, 2010.
|
55 |
Simon JA, Ricci JL, DiCesare PE. Bioresorbable fracture fixation in orthopaedics: a comprehensive review. Part I. Basic science and preclinical studies[J]. Am J Orthop, 1997, 26(10): 665-671.
|
56 |
Athanassiadi K, Kalavrouziotis G, Rondogianni D, et al. Primary chest wall tumors: early and long-term results of surgical treatment[J]. Eur J Cardiothorac Surg, 2001, 19(5): 589-593.
|
57 |
Coonar AS, Qureshi N, Smith I, et al. A novel titanium rib bridge system for chest wall reconstruction[J]. Ann Thorac Surg, 2009, 87(5): e46-e48.
|
58 |
Chai X, Lin Q, Ruan Z, et al. The clinical application of absorbable intramedullary nail and claw plate on treating multiple rib fractures[J]. Minerva Chir, 2013, 68(4): 415-420.
|
59 |
Lionelli GT, Korentager RA. Biomechanical failure of metacarpal fracture resorbable plate fixation[J]. Ann Plast Surg, 2002, 49(2): 202-206.
|
60 |
Nirula R, Diaz J Jr, Trunkey D, et al. Rib fracture repair: technical issues, and future directions[J]. World J Surg, 2009, 33(1):14-22.
|