切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2019, Vol. 06 ›› Issue (04) : 253 -257. doi: 10.3877/cma.j.issn.2095-8773.2019.04.10

所属专题: 总编推荐 文献

综述

NF-κB信号通路在胸外科常见恶性肿瘤中的研究进展
梁宝磊1, 魏豪2, 石珂2, 邵长海2, 柯希贤2, 蔡庆勇2,()   
  1. 1. 563000 遵义医学院附属医院胸外科;153100 伊春,黑龙江省林业第二医院胸外科
    2. 563000 遵义医学院附属医院胸外科
  • 收稿日期:2019-05-10 出版日期:2019-11-28
  • 通信作者: 蔡庆勇
  • 基金资助:
    贵州科学技术基金(黔科合J字[2013]2325号)

Research progress of NF-κB signaling pathway in common diseases of thoracic surgery

Baolei Liang1, Hao Wei2, Ke Shi2, Changhai Shao2, Xixian Ke2, Qingyong Cai2,()   

  1. 1. Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi 56300, China;Department of Thoracic Surgery, Heilongjiang Forestry Second Hospital, Heilongjiang 153100, China
    2. Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi 56300, China
  • Received:2019-05-10 Published:2019-11-28
  • Corresponding author: Qingyong Cai
  • About author:
    Corresponding author: Cai Qingyong, Email:
引用本文:

梁宝磊, 魏豪, 石珂, 邵长海, 柯希贤, 蔡庆勇. NF-κB信号通路在胸外科常见恶性肿瘤中的研究进展[J]. 中华胸部外科电子杂志, 2019, 06(04): 253-257.

Baolei Liang, Hao Wei, Ke Shi, Changhai Shao, Xixian Ke, Qingyong Cai. Research progress of NF-κB signaling pathway in common diseases of thoracic surgery[J]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2019, 06(04): 253-257.

核转录因子-κ B(NF-κB )参与多种信号通路,诱导细胞抑制凋亡并促进细胞的增殖、侵袭、转移,促进肿瘤细胞血管生成、与致癌作用密切相关。该文旨在对NF-κB信号通路在胸外科常见恶性肿瘤中非小细胞肺癌及食管鳞状细胞癌的研究进展进行综述。

Nuclear transcription factor Kappa B (NF-κB) is involved in a variety of signaling pathways, including inducing cell inhibition of apoptosis, promoting cell proliferation, invasion, metastasis, and promoting tumor cell angiogenesis, which are closely related to carcinogenesis. This review is intended to provide an overview of the progress in the study of NF-κB signaling pathways in non-small cell lung cancer and esophageal squamous cell carcinoma of common malignancies in thoracic surgery.

1
Struzik J, Szulc-Dabrowska L. NF-κB signaling in targeting tumor cells by oncolytic viruses—therapeutic perspectives [J]. Cancers, 2018, 10(11): E426.
2
Cui Z H, Xuan Y Z. Advances in the relationship between Nuclear factor-κB signal transduction pathway and tumor[J]. World Latest Medicne Information , 2015(21): 56-58.
3
Shujun Y, Jian L, Yu C, et al. MicroRNA-216a promotes M1 macrophages polarization and atherosclerosis progression by activating telomerase, via, the Smad3/NF-κB pathway[J]. Biochim Biophys Acta Mol Basis Dis, 2018, pii: S0925-4439(18)30220-30225.
4
李国仁,于世忠. 中国继发性食管癌的现状和进展[J]. 中华胸部外科电子杂志,2018, 5(1): 53-58.
5
Zhang Q, Lenardo M J, Baltimore D. 30 years of NF-κB: A blossoming of relevance to human pathobiology[J]. Cell, 2017, 168(1-2): 37-57.
6
Lehman H L, Kidacki M, Warrick J I, et al. NF-κB hyperactivation causes invasion of esophageal squamous cell carcinoma with EGFR overexpression and p120-catenin down-regulation [J]. Oncotarget, 2018, 9(13): 11180-11196.
7
Chen Z J. Ubiquitin signalling in the NF-κB pathway[J].Nat Cell Biol,2005,7(8): 758-765.
8
Taniguchi K, Yamachika S, He F, et al. p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer[J]. Febs Letters, 2016, 590(15): 2375-2397.
9
Sun S C. The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17(9): 545-558.
10
Slotta C, Schlüter T, Ruizperera L M, et al. CRISPR/Cas9-mediated knockout of c-REL in HeLa cells results in profound defects of the cell cycle[J]. PLoS One, 2017, 12(8): e0182373.
11
Khan A, Fornes O, Stigliani A, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework[J]. Nucleic Acids Res, 2017, 46(D1): D260-D266.
12
Bradford J W, Baldwin A S. IKK/nuclear factor-kappa B and oncogenesis: Roles in tumor-initiating cells and in the tumor microenvironment[J]. Adv Cancer Res, 2014,121: 125-145.
13
Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age[J]. Nat Rev Immunol, 2018, 22(2): 1-16.
14
Siegel R L, Miller K D, Jemal A. Cancer statistics, 2018[J]. CA-Cancer J Clin, 2017, 67(1): 7-30.
15
Blakely C M, Pazarentzos E, Olivas V, et al. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer[J]. Cell rep, 2015, 11(1): 98-110.
16
Yang L, Zhou Y, Li Y,et al.Mutations of p53 and KRAS activate NF-κB to promote chemo resistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells[J]. Cancer Lett, 2015,357(2): 520-526.
17
王佳丽,张翔宇,邓佳,等. Bin1基因通过NF-κB途径抑制非小细胞肺癌A549细胞的迁移和侵袭能力[J]. 中国肿瘤生物治疗杂志,2016, 23(4): 481-485.
18
Yodkeeree S, Pompimon W, Limtrakul P.Crebanine,an aporphine alkaloid, sensitizes TNF-αinduced apoptosis and suppressed invasion of human lung adenocarcinoma cells A549 by blocking NF-κB regulated gene products[J]. Tumour Biol,2014,35(9): 8615-8624.
19
Gao P, Gao Y J, Liang H L.Effect of NF-κB inhibitor PDTC on VEGF and endostatin expression of mice with Lewis lung cancer[J]. Asian Pac J Trop Med,2015, 8(3): 220-224.
20
Zeng Q, Li S, Zhou Y,et al.Interleukin-32 contributes to invasion and metastasis of primary lung adenocarcinoma via NF-kappaB induced matrix metalloproteinases 2 and 9 expression[J].Cytokine,2014,65(1): 24-32.
21
Cheng X, Gu J, Zhang M,et al. Astragaloside Ⅳ inhibits migration and invasion in human lung cancer A549 cells via regulating PKC-α-ERK1/2-NF-κB pathway[J]. Int Immunopharmacol,2014,23(1): 304-313.
22
Kumar M, Allison D F, Baranova N N,et al.NF-κB regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells[J].PLoS One,2013,8(7): e68597.
23
Slotta C, Storm J, Pfisterer N, et al. IKK1/2 protect human cells from TNF-mediated RIPK1-dependent apoptosis in an NF-κB-independent manner[J]. Biochim Biophys, 2018, 1865(8): 1025-1033.
24
Xia Y, Shen S, Verma I M. NF-κB, an active player in human cancers[J]. Cancer Immunol Res, 2014, 2(9): 823-830.
25
Xiao Z, Jiang Q, Willette-Brown J, et al. The pivotal role of IKKα in the development of spontaneous lung squamous cell carcinomas[J]. Cancer Cell, 2013, 23(4): 527-540.
26
Li N, Wu X, Holzer R G, et al. Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice[J]. J Clin Investig, 2013, 123(5): 2231-2243.
27
Martin B N, Wang C, Willette-Brown J, et al. IKKα negatively regulates ASC-dependent inflammasome activation[J]. Nat Commun, 2014, 5(5): 4977.
28
Xiao D, Jia J, Shi Y, et al. Opposed expression of IKKα:Loss in keratinizing carcinomas and gain in non-keratinizing carcinomas[J]. Oncotarget, 2015, 6(28): 25499-25505.
29
Song N Y, Zhu F, Wang Z, et al. IKKα inactivation promotes Kras-initiated lung adenocarcinoma development through disrupting major redox regulatory pathways[J]. Proc Natl Acad Sci, 2018, 115(4): E812-E821.
30
Grinberg-Bleyer Y, Oh H, Desrichard A, et al. NF-κB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer[J]. Cell, 2017, 170(6): 1096-1108.
31
Lin C, Song L, Gong H,et al. Nkx2-8 down regulation promotes angiogenesis and activates NF-kappaB in esophageal cancer[J]. Cancer Res,2013,73(12): 3638-3648.
32
刘亮,贺红梅,左静,等. 食管上皮癌变过程中NF-κB与hTERT的表达及其意义[J]. 肿瘤防治研究,2014, 41(12): 1304-1306.
33
Cai Q Y, Liang G Y, Zheng Y F, et al. CCR7 enhances the angiogenic capacity of esophageal squamous carcinoma cells in vitro via activation of the NF-κB/VEGF signaling pathway[J]. Am J Transl Res, 2017, 9(7): 3282-3292.
34
Huang C Y, Lee C H, Tu C C, et al. Glucose-regulated protein 94 mediates progression and metastasis of esophageal squamous cell carcinoma via mitochondrial function and the NF-kB/COX-2/VEGF axis[J]. Oncotarget, 2018, 9(10): 9425-9441.
35
Ming X Y, Zhang X, Cao T T, et al. RHCG Suppresses Tumorigenicity and Metastasis in Esophageal Squamous Cell Carcinoma via Inhibiting NF-κB Signaling and MMP1 Expression[J]. Theranostics, 2018, 8(1): 185-198.
36
Mohammed S, Harikumar K B. Role of Nutraceuticals in Cancer Chemosensitization[M]//Bharti A C, Bhushan B.Cancer sensitizing agents for chemotherapy, 2018, 61-76.
37
Dimitrakopoulos F D, Antonacopoulou A G, Kottorou A E, et al. NF-κB2 genetic variations are significantly associated with non-small cell lung cancer risk and overall survival[J]. Sci Rep-UK, 2018, 8(1): 5259-5270.
38
Zhao Y, Foster N R, Meyers J P, et al. A phase Ⅰ/Ⅱ study of bortezomib in combination with paclitaxel, carboplatin, and concurrent thoracic radiation therapy for non-small-cell Lung cancer: North central cancer treatment group (NCCTG)-N0321[J]. J Thorac Oncol, 2015, 10(1): 172-180.
39
Kontopodis E, Kotsakis A, Kentepozidis N, et al. A phase Ⅱ,open-label trial of bortezomib (VELCADE®) in combination with gemcitabine and cisplatin in patients with locally advanced or metastatic non-small cell lung cancer[J]. Cancer chemoth pharm, 2016, 77(5): 940-956.
40
Qu Y Q, Gordillo-Martinez F, Law B Y K, et al. 2-aminoethoxydiphenylborane sensitizes anti-tumor effect of bortezomib via suppression of calcium-mediated autophagy[J]. Cell Death Dis, 2018, 9(3): 361-380.
41
Lu G, Middleton R E, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins[J]. Science, 2014, 343(6168): 305-309.
42
Würth R, Thellung S, Bajetto A, et al. Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds[J]. Drug Discov Today, 2016, 21(1): 190-199.
43
König H G, Watters O, Kinsella S, et al. A constitutively-active IKK-complex at the axon initial segment[J]. Brain res, 2018, 1678: 356-366.
44
Lee K E, Hahm E, Bae S, et al. The enhanced tumor inhibitory effects of gefitinib and Lascorbic acid combination therapy in nonsmall cell lung cancer cells[J]. Oncol lett, 2017, 14(1): 276-282.
45
Tang H, Shrager J B. CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: a personalized molecular surgical therapy[J]. EMBO mol med, 2016, 8(2): 83-85.
46
Liu P, Wang Z, Brown S, et al. Liposome encapsulated Disulfiram inhibits NFκB pathway and targets breast cancer stem cells in vitro and in vivo[J]. Oncotarget, 2014, 5(17): 7471-7485.
47
Jivan R, Peres J, Damelin L H, et al. Disulfiram with or without metformin inhibits oesophageal squamous cell carcinoma in vivo[J]. Cancer lett, 2018, 417: 1-10.
[1] 朱超男, 王帅, 王文博, 郑贸根, 程远, 陈志全. 非小细胞肺癌患者组织miR-31-5p表达与临床病理特征及预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 508-510.
[2] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[3] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[4] 徐天亮, 程干思, 吴亚平, 龚荣, 胡洁, 段群娣, 李承慧. 奥希替尼联合安罗替尼二线治疗转移性NSCLC的疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 520-522.
[5] 魏婷婷, 胡小红, 龚自强, 熊鹿. 老年非小细胞肺癌组织ARPC2表达及与预后关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 584-586.
[6] 杜静怡, 徐兴祥. 循环肿瘤细胞在非小细胞肺癌中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 596-600.
[7] 杨豪, 王云川, 陈有英. 硬膜外阻滞复合羟考酮镇痛在非小细胞肺癌患者中的应用[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 370-372.
[8] 李多, 郝昭昭, 陈延伟, 南岩东. Wnt/β-Catenin通路促进非小细胞肺癌转移机制研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 281-284.
[9] 邹琴, 龙玲, 叶容, 张小洪. PD-1抑制剂免疫治疗NSCLC所致反应性毛细血管增生症的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 278-280.
[10] 仇丽敏, 胡航, 孙云浩, 孙健, 陈婷婷. NSCLC患者根治性切除术后复发风险分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 242-244.
[11] 李咏生, 孙建国, 李梦侠, 重庆肺癌精准治疗协作组(CPLOG). 第三代EGFR-TKI耐药后诊疗策略专家共识[J]. 中华肺部疾病杂志(电子版), 2023, 16(02): 145-155.
[12] 孙中华, 王晓晗, 接贵涛, 刘淑芳. EGFR突变非小细胞肺癌胸腔积液与外周血ctDNA丰度及EGFR-TKI疗效分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 101-103.
[13] 郭丹, 冯琪雅, 吕丛海, 王波, 卢伟. 胸腔镜下肺叶切除术治疗非小细胞肺癌的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 110-112.
[14] 李一然, 王玉秀, 朱研, 王梦, 刘颖, 闫文锦, 徐兴祥, 闵凌峰. 基于GEO数据库分析影响纳武单抗及派姆单抗治疗非小细胞肺癌疗效的差异基因[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 20-25.
[15] 李世浩, 王玉姣, 李子豪, 吴彬, 盛银良, 齐宇. 单细胞转录组分析巨噬细胞帽状蛋白对食管鳞癌细胞增殖和转移的影响[J]. 中华胸部外科电子杂志, 2023, 10(02): 98-105.
阅读次数
全文


摘要