切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2019, Vol. 06 ›› Issue (04) : 253 -257. doi: 10.3877/cma.j.issn.2095-8773.2019.04.10

所属专题: 总编推荐 文献

综述

NF-κB信号通路在胸外科常见恶性肿瘤中的研究进展
梁宝磊1, 魏豪2, 石珂2, 邵长海2, 柯希贤2, 蔡庆勇2,()   
  1. 1. 563000 遵义医学院附属医院胸外科;153100 伊春,黑龙江省林业第二医院胸外科
    2. 563000 遵义医学院附属医院胸外科
  • 收稿日期:2019-05-10 出版日期:2019-11-28
  • 通信作者: 蔡庆勇
  • 基金资助:
    贵州科学技术基金(黔科合J字[2013]2325号)

Research progress of NF-κB signaling pathway in common diseases of thoracic surgery

Baolei Liang1, Hao Wei2, Ke Shi2, Changhai Shao2, Xixian Ke2, Qingyong Cai2,()   

  1. 1. Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi 56300, China;Department of Thoracic Surgery, Heilongjiang Forestry Second Hospital, Heilongjiang 153100, China
    2. Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical College, Zunyi 56300, China
  • Received:2019-05-10 Published:2019-11-28
  • Corresponding author: Qingyong Cai
  • About author:
    Corresponding author: Cai Qingyong, Email:
引用本文:

梁宝磊, 魏豪, 石珂, 邵长海, 柯希贤, 蔡庆勇. NF-κB信号通路在胸外科常见恶性肿瘤中的研究进展[J/OL]. 中华胸部外科电子杂志, 2019, 06(04): 253-257.

Baolei Liang, Hao Wei, Ke Shi, Changhai Shao, Xixian Ke, Qingyong Cai. Research progress of NF-κB signaling pathway in common diseases of thoracic surgery[J/OL]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2019, 06(04): 253-257.

核转录因子-κ B(NF-κB )参与多种信号通路,诱导细胞抑制凋亡并促进细胞的增殖、侵袭、转移,促进肿瘤细胞血管生成、与致癌作用密切相关。该文旨在对NF-κB信号通路在胸外科常见恶性肿瘤中非小细胞肺癌及食管鳞状细胞癌的研究进展进行综述。

Nuclear transcription factor Kappa B (NF-κB) is involved in a variety of signaling pathways, including inducing cell inhibition of apoptosis, promoting cell proliferation, invasion, metastasis, and promoting tumor cell angiogenesis, which are closely related to carcinogenesis. This review is intended to provide an overview of the progress in the study of NF-κB signaling pathways in non-small cell lung cancer and esophageal squamous cell carcinoma of common malignancies in thoracic surgery.

1
Struzik J, Szulc-Dabrowska L. NF-κB signaling in targeting tumor cells by oncolytic viruses—therapeutic perspectives [J]. Cancers, 2018, 10(11): E426.
2
Cui Z H, Xuan Y Z. Advances in the relationship between Nuclear factor-κB signal transduction pathway and tumor[J]. World Latest Medicne Information , 2015(21): 56-58.
3
Shujun Y, Jian L, Yu C, et al. MicroRNA-216a promotes M1 macrophages polarization and atherosclerosis progression by activating telomerase, via, the Smad3/NF-κB pathway[J]. Biochim Biophys Acta Mol Basis Dis, 2018, pii: S0925-4439(18)30220-30225.
4
李国仁,于世忠. 中国继发性食管癌的现状和进展[J]. 中华胸部外科电子杂志,2018, 5(1): 53-58.
5
Zhang Q, Lenardo M J, Baltimore D. 30 years of NF-κB: A blossoming of relevance to human pathobiology[J]. Cell, 2017, 168(1-2): 37-57.
6
Lehman H L, Kidacki M, Warrick J I, et al. NF-κB hyperactivation causes invasion of esophageal squamous cell carcinoma with EGFR overexpression and p120-catenin down-regulation [J]. Oncotarget, 2018, 9(13): 11180-11196.
7
Chen Z J. Ubiquitin signalling in the NF-κB pathway[J].Nat Cell Biol,2005,7(8): 758-765.
8
Taniguchi K, Yamachika S, He F, et al. p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer[J]. Febs Letters, 2016, 590(15): 2375-2397.
9
Sun S C. The non-canonical NF-κB pathway in immunity and inflammation[J]. Nat Rev Immunol, 2017, 17(9): 545-558.
10
Slotta C, Schlüter T, Ruizperera L M, et al. CRISPR/Cas9-mediated knockout of c-REL in HeLa cells results in profound defects of the cell cycle[J]. PLoS One, 2017, 12(8): e0182373.
11
Khan A, Fornes O, Stigliani A, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework[J]. Nucleic Acids Res, 2017, 46(D1): D260-D266.
12
Bradford J W, Baldwin A S. IKK/nuclear factor-kappa B and oncogenesis: Roles in tumor-initiating cells and in the tumor microenvironment[J]. Adv Cancer Res, 2014,121: 125-145.
13
Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age[J]. Nat Rev Immunol, 2018, 22(2): 1-16.
14
Siegel R L, Miller K D, Jemal A. Cancer statistics, 2018[J]. CA-Cancer J Clin, 2017, 67(1): 7-30.
15
Blakely C M, Pazarentzos E, Olivas V, et al. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer[J]. Cell rep, 2015, 11(1): 98-110.
16
Yang L, Zhou Y, Li Y,et al.Mutations of p53 and KRAS activate NF-κB to promote chemo resistance and tumorigenesis via dysregulation of cell cycle and suppression of apoptosis in lung cancer cells[J]. Cancer Lett, 2015,357(2): 520-526.
17
王佳丽,张翔宇,邓佳,等. Bin1基因通过NF-κB途径抑制非小细胞肺癌A549细胞的迁移和侵袭能力[J]. 中国肿瘤生物治疗杂志,2016, 23(4): 481-485.
18
Yodkeeree S, Pompimon W, Limtrakul P.Crebanine,an aporphine alkaloid, sensitizes TNF-αinduced apoptosis and suppressed invasion of human lung adenocarcinoma cells A549 by blocking NF-κB regulated gene products[J]. Tumour Biol,2014,35(9): 8615-8624.
19
Gao P, Gao Y J, Liang H L.Effect of NF-κB inhibitor PDTC on VEGF and endostatin expression of mice with Lewis lung cancer[J]. Asian Pac J Trop Med,2015, 8(3): 220-224.
20
Zeng Q, Li S, Zhou Y,et al.Interleukin-32 contributes to invasion and metastasis of primary lung adenocarcinoma via NF-kappaB induced matrix metalloproteinases 2 and 9 expression[J].Cytokine,2014,65(1): 24-32.
21
Cheng X, Gu J, Zhang M,et al. Astragaloside Ⅳ inhibits migration and invasion in human lung cancer A549 cells via regulating PKC-α-ERK1/2-NF-κB pathway[J]. Int Immunopharmacol,2014,23(1): 304-313.
22
Kumar M, Allison D F, Baranova N N,et al.NF-κB regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells[J].PLoS One,2013,8(7): e68597.
23
Slotta C, Storm J, Pfisterer N, et al. IKK1/2 protect human cells from TNF-mediated RIPK1-dependent apoptosis in an NF-κB-independent manner[J]. Biochim Biophys, 2018, 1865(8): 1025-1033.
24
Xia Y, Shen S, Verma I M. NF-κB, an active player in human cancers[J]. Cancer Immunol Res, 2014, 2(9): 823-830.
25
Xiao Z, Jiang Q, Willette-Brown J, et al. The pivotal role of IKKα in the development of spontaneous lung squamous cell carcinomas[J]. Cancer Cell, 2013, 23(4): 527-540.
26
Li N, Wu X, Holzer R G, et al. Loss of acinar cell IKKα triggers spontaneous pancreatitis in mice[J]. J Clin Investig, 2013, 123(5): 2231-2243.
27
Martin B N, Wang C, Willette-Brown J, et al. IKKα negatively regulates ASC-dependent inflammasome activation[J]. Nat Commun, 2014, 5(5): 4977.
28
Xiao D, Jia J, Shi Y, et al. Opposed expression of IKKα:Loss in keratinizing carcinomas and gain in non-keratinizing carcinomas[J]. Oncotarget, 2015, 6(28): 25499-25505.
29
Song N Y, Zhu F, Wang Z, et al. IKKα inactivation promotes Kras-initiated lung adenocarcinoma development through disrupting major redox regulatory pathways[J]. Proc Natl Acad Sci, 2018, 115(4): E812-E821.
30
Grinberg-Bleyer Y, Oh H, Desrichard A, et al. NF-κB c-Rel is crucial for the regulatory T cell immune checkpoint in cancer[J]. Cell, 2017, 170(6): 1096-1108.
31
Lin C, Song L, Gong H,et al. Nkx2-8 down regulation promotes angiogenesis and activates NF-kappaB in esophageal cancer[J]. Cancer Res,2013,73(12): 3638-3648.
32
刘亮,贺红梅,左静,等. 食管上皮癌变过程中NF-κB与hTERT的表达及其意义[J]. 肿瘤防治研究,2014, 41(12): 1304-1306.
33
Cai Q Y, Liang G Y, Zheng Y F, et al. CCR7 enhances the angiogenic capacity of esophageal squamous carcinoma cells in vitro via activation of the NF-κB/VEGF signaling pathway[J]. Am J Transl Res, 2017, 9(7): 3282-3292.
34
Huang C Y, Lee C H, Tu C C, et al. Glucose-regulated protein 94 mediates progression and metastasis of esophageal squamous cell carcinoma via mitochondrial function and the NF-kB/COX-2/VEGF axis[J]. Oncotarget, 2018, 9(10): 9425-9441.
35
Ming X Y, Zhang X, Cao T T, et al. RHCG Suppresses Tumorigenicity and Metastasis in Esophageal Squamous Cell Carcinoma via Inhibiting NF-κB Signaling and MMP1 Expression[J]. Theranostics, 2018, 8(1): 185-198.
36
Mohammed S, Harikumar K B. Role of Nutraceuticals in Cancer Chemosensitization[M]//Bharti A C, Bhushan B.Cancer sensitizing agents for chemotherapy, 2018, 61-76.
37
Dimitrakopoulos F D, Antonacopoulou A G, Kottorou A E, et al. NF-κB2 genetic variations are significantly associated with non-small cell lung cancer risk and overall survival[J]. Sci Rep-UK, 2018, 8(1): 5259-5270.
38
Zhao Y, Foster N R, Meyers J P, et al. A phase Ⅰ/Ⅱ study of bortezomib in combination with paclitaxel, carboplatin, and concurrent thoracic radiation therapy for non-small-cell Lung cancer: North central cancer treatment group (NCCTG)-N0321[J]. J Thorac Oncol, 2015, 10(1): 172-180.
39
Kontopodis E, Kotsakis A, Kentepozidis N, et al. A phase Ⅱ,open-label trial of bortezomib (VELCADE®) in combination with gemcitabine and cisplatin in patients with locally advanced or metastatic non-small cell lung cancer[J]. Cancer chemoth pharm, 2016, 77(5): 940-956.
40
Qu Y Q, Gordillo-Martinez F, Law B Y K, et al. 2-aminoethoxydiphenylborane sensitizes anti-tumor effect of bortezomib via suppression of calcium-mediated autophagy[J]. Cell Death Dis, 2018, 9(3): 361-380.
41
Lu G, Middleton R E, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins[J]. Science, 2014, 343(6168): 305-309.
42
Würth R, Thellung S, Bajetto A, et al. Drug-repositioning opportunities for cancer therapy: novel molecular targets for known compounds[J]. Drug Discov Today, 2016, 21(1): 190-199.
43
König H G, Watters O, Kinsella S, et al. A constitutively-active IKK-complex at the axon initial segment[J]. Brain res, 2018, 1678: 356-366.
44
Lee K E, Hahm E, Bae S, et al. The enhanced tumor inhibitory effects of gefitinib and Lascorbic acid combination therapy in nonsmall cell lung cancer cells[J]. Oncol lett, 2017, 14(1): 276-282.
45
Tang H, Shrager J B. CRISPR/Cas-mediated genome editing to treat EGFR-mutant lung cancer: a personalized molecular surgical therapy[J]. EMBO mol med, 2016, 8(2): 83-85.
46
Liu P, Wang Z, Brown S, et al. Liposome encapsulated Disulfiram inhibits NFκB pathway and targets breast cancer stem cells in vitro and in vivo[J]. Oncotarget, 2014, 5(17): 7471-7485.
47
Jivan R, Peres J, Damelin L H, et al. Disulfiram with or without metformin inhibits oesophageal squamous cell carcinoma in vivo[J]. Cancer lett, 2018, 417: 1-10.
[1] 张礼江, 沈玲佳, 施我大. 倾向性评分匹配分析奥希替尼对晚期NSCLC 预后的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 820-822.
[2] 梁丽斯, 李洁, 贺帅, 来艳君, 刘铭, 张琳. MMP-9、MMP-2 及TLR4、HE4对非小细胞肺癌早期诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 756-761.
[3] 赖淼, 景鑫, 李桂珍, 李怡. 非小细胞肺癌EGFR 突变亚型的临床病理和预后意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 731-737.
[4] 杨慧, 郭丽娟, 冯晓丹, 李静, 黄成谋, 蔡兴锐, 覃英娇, 王远礼. 非小细胞肺癌铂类药物耐药mi RNA表达特征及预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 719-724.
[5] 李多, 郝昭昭, 陈延伟, 南岩东. 血清PTX3表达与非小细胞肺癌骨转移的相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 558-562.
[6] 刘松, 张进召, 贾艳云. 帕博利珠单抗治疗晚期非小细胞肺癌反应降低与抗生素预处理的关系[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 553-557.
[7] 韩晓宇, 李柯育, 赵志菲, 高建平. SNHG17过表达对非小细胞肺癌切除术预后的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 543-547.
[8] 张桂萍, 丘勇林, 湛绮婷, 孙乐栋. 晚期非小细胞肺癌血清Ape1/Ref-1对放射性肺损伤发生的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 519-523.
[9] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[10] 崔伟, 邓屹, 叶苏意, 李静, 陈晓明, 张靖, 许荣德. 载药微球支气管动脉化疗栓塞术治疗罕见非小细胞肺癌的临床疗效和安全性分析[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 303-310.
[11] 崔伟, 叶苏意, 邓屹, 陈晓明, 张靖, 李静, 许荣德. 载药微球支气管动脉化疗栓塞术治疗难治性非小细胞肺癌的临床疗效及安全性[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 311-316.
[12] 崔伟, 李静, 陈晓明, 张靖, 邓屹, 许荣德. 载药微球支气管动脉化疗栓塞术治疗非小细胞肺癌的研究进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 289-295.
[13] 蔡剑桥, 蒋雷. 单孔胸腔镜与开胸双袖式肺叶切除治疗非小细胞肺癌对比[J/OL]. 中华胸部外科电子杂志, 2024, 11(04): 225-230.
[14] 张迅夫, 马金山, 蒋云龙, 加纳提·托勒恒, 侯昌剑, 萨伍提·斯拉吉丁. GATA3在非小细胞肺癌组织中的表达及临床病理意义[J/OL]. 中华胸部外科电子杂志, 2024, 11(03): 175-179.
[15] 李子健, 王锐, 钟云鹏, 张迪轩, 梁韵娟, 杨超, 何建行, 李树本. 自体肺移植术在胸部恶性肿瘤中的临床应用[J/OL]. 中华胸部外科电子杂志, 2024, 11(03): 193-200.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?