切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2022, Vol. 09 ›› Issue (02) : 65 -74. doi: 10.3877/cma.j.issn.2095-8773.2022.02.01

国际胸外科专栏/述评

Airway pressure release ventilation for in-vivo donor lung management and lung transplant outcomes
Sreeja Biswas Roy1, Deepika Razia1, Ashwini Arjuna2   
  1. 1. Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Center for Thoracic Disease and Transplantation, Phoenix, AZ, USA
    2. Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Center for Thoracic Disease and Transplantation, Phoenix, AZ, USA;Creighton University School of Medicine-Phoenix Regional Campus, Phoenix, AZ, USA
    3. University of Arizona College of Public Health, Phoenix, AZ, USA
    4. Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Center for Thoracic Disease and Transplantation, Phoenix, AZ, USA;University of Arizona College of Medicine-Phoenix Campus, Phoenix, AZ, USA
  • 收稿日期:2022-01-04 接受日期:2022-02-28 出版日期:2022-05-28

Airway pressure release ventilation for in-vivo donor lung management and lung transplant outcomes

Sreeja Biswas Roy1, Deepika Razia1, Ashwini Arjuna2   

  • Received:2022-01-04 Accepted:2022-02-28 Published:2022-05-28
引用本文:

Sreeja Biswas Roy, Deepika Razia, Ashwini Arjuna. Airway pressure release ventilation for in-vivo donor lung management and lung transplant outcomes[J]. 中华胸部外科电子杂志, 2022, 09(02): 65-74.

Sreeja Biswas Roy, Deepika Razia, Ashwini Arjuna. Airway pressure release ventilation for in-vivo donor lung management and lung transplant outcomes[J]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2022, 09(02): 65-74.

Background:

Airway pressure release ventilation (APRV) can be used for cadaveric donor lung recruitment. APRV elevates PaO2 in donor lungs; however, reported outcomes in recipients with APRV-managed donor lungs are limited.

Methods:

We retrospectively reviewed patients who underwent lung transplantation (LTx) from 2012 to 2013 and divided them into two groups based on mode of ventilation used during donor management and organ extraction (A: non-APRV; B: APRV). Kaplan-Meier method and multivariate Cox regression were used for analysis.

Results:

We found 126 LTx recipients (LTxRs); 9 were excluded for use of portable ventilation perfusion systems. Of the remaining 117 patients, 81 (69%) were in Group A; 36 (31%) were in Group B. Preoperative LTxR characteristics (age, sex, lung allocation score, end-stage lung disease type) were comparable between groups. Donors for Group B were older (P=0.03) and had higher body mass index (BMI) (P<0.001), higher incidence of death from chest trauma (P=0.008), longer ventilation duration after brain death (P<0.001), and higher pre-explant PaO2/FiO2 ratios (P<0.001). Post-LTx duration of mechanical ventilation, hospital stay, and median survival were similar in both groups. Risk of death was comparable between the two groups at the end of follow-up (HR =1.42; 95% CI: 0.57-3.56; P=0.45).

Conclusions:

APRV is a safe and effective pre-LTx donor lung management strategy. Short- and long-term survival outcomes were comparable in LTx recipients, irrespective of donor ventilation mode. APRV may help recruit lungs from older donors with higher BMI who die from chest trauma and have anticipated longer ventilation duration.

Table 1 Recipient and donor characteristics and recipient outcomes in groups stratified by donor lung ventilation strategy
Variable Group A (no APRV) (n=81) Group B (APRV) (n=36) P valuea
Recipient characteristics
  Age, years 64 (56-67) 61.5 (57.5-65) 0.24
  Male sex, n (%) 44 (54.3) 19 (52.8) 0.87
  BMI, kg/m2 25.3 (21.6-28.6) 23 (19.8-27.6) 0.23
  Lung allocation score 35.8 (32.7-46.4) 35.8 (32.3-39.3) 0.55
  Mean PAP, mmHg 25 (20-30) 24 (20-31) 0.85
  Disease type, n (%)     0.71
    Obstructive 42 (51.9) 19 (52.8)  
    Restrictive 32 (39.5) 13 (36.1)  
    Cystic fibrosis 3 (3.7) 3 (8.3)  
    Other 4 (4.9) 1 (2.8)  
Donor characteristics
  Age, years 36 (28-48.1) 46 (32.5-54) 0.036
  Male sex, n (%) 52 (64.2) 29 (80.6) 0.077
  BMI, kg/m2 25.1 (22.6-27.2) 29.2 (26.4-32.6) <0.001
  Duration on ventilator after brain death, h 47.6 (37.4-58.4) 71.1 (44.6-96.1) <0.001
  Chest trauma, n (%) 4 (4.9) 8 (22.2) 0.008
  Smoking history ≥20 pack-years, n (%) 11 (13.6) 3 (8.3) 0.54
  Last PaO2/FiO2 ratio 410 (345-462) 467.5 (409.5-524) <0.001
Transplant outcomes
  Bilateral LTx, n (%) 74 (91.4) 35 (97.2) 0.43
  Allograft ischemic time, minb 304 (248-340) 313 (252.5-331.5) 0.62
  CPB, yes, n (%) 20 (24.7) 9 (25) 0.97
  ECMO salvage for PGD, n (%) 2 (2.5) 2 (5.6) 0.36
  Time on ventilator, n (%)c
    ≤2 days 52 (64.2) 24 (66.7) 0.79
    >2, <5 days 12 (14.8) 7 (19.4) 0.53
    ≥5 days 15 (18.5) 5 (13.9) 0.50
  Post-LTx length of stay, days 12 (10-17) 12 (10-16) 0.89
  Total hospital days in 1 year 6 (1-14) 2.5 (0-9) 0.07
  Total rehabilitation days in 1 year 0 (0-0) 0 (0-8) 0.75
  Pulmonary readmissions, n (%)     0.11
    0 47 (58) 27 (75)  
    1 25 (30.9) 6 (16.7)  
    ≥2 9 (11.1) 3 (8.3)  
    Survival, days 1,181 (743-1,462) 1,246 (951.5-1,409) 0.71
Figure 1 Allograft function measured by forced expiratory volume in one second (FEV1, %predicted) at 1-year post-transplant, stratified by non-APRV and APRV study groups, in cohorts of patients who were alive at 1, 2, 3 and 4 years post-LTx. APRV, airway pressure release ventilation.
Figure 2 Cumulative survival estimates for lung transplant recipients stratified by groups based on donor lung ventilation strategy. (A) Overall survival; (B) 1-year survival; (C) 2-year survival; (D) 3-year survival. APRV, airway pressure release ventilation.
Table 2 Univariate and multivariable Cox regression to ascertain predictors of 1- and 3-year risk of death
Predictor Mortality risk at 1 year Mortality risk at 3 years
Univariate analysisa Multivariate analysisb Univariate analysisa Multivariate analysisb
P valuec HR (95% CI) P valued P valuec HR (95% CI) P valued
Donor factors            
  Total ventilation time, h 0.078     N/A N/A  
  Donor smoking, yes 0.007 5.68 (1.44-22.4) 0.01 N/A N/A  
  APRV donor ventilation mode, yes 0.019 1.07 (0.13-8.40) 0.94 N/A    
Recipient factors            
  Age, years 0.097 1.05 (0.96-1.15) 0.24 0.643 0.97 (0.93-1.01) 0.28
  Disease type            
    Obstructive Ref Ref   Ref    
    Restrictive 0.009 4.00 (0.47-33.9) 0.20 0.014    
    Cystic fibrosis 1.000     0.058    
    Others 0.129 1.83 (0.11-31.6) 0.67      
  Lung allocation score            
    <40 Ref Ref   Ref Ref  
    ≥40 0.001 2.20 (0.37-13.0) 0.38 0.004 0.56 (0.18-1.78) 0.33
  Functional status at LTx            
    ≤60 Ref Ref   Ref    
    >60 0.010 0.14 (0.02-1.11) 0.06 0.022    
  LTx, single lung 0.179     0.136    
  Ischemia time            
    ≤250 min Ref Ref   Ref    
    >250 min 0.070 1.15 (3.28-4.73) 0.84 0.551    
  CPB, yes 0.016 0.87 (0.21-3.72) 0.87 0.134 1.26 (0.37-4.32) 0.70
  ECMO salvage for PGD, yes 0.021 3.42 (0.31-38.2) 0.31 0.496    
  Days on ventilator            
    <48 h Ref Ref   Ref Ref  
    >48 h, <5 days 0.025 7.01 (0.99-49.3) 0.05 0.965 0.3 (0.09-0.96) 0.04
    >5 days 0.007 1.55 (0.24-9.7) 0.63 0.025    
  Post-LTx hospital LOS            
    <15 days Ref Ref   Ref Ref  
    ≥15 days 0.032 2.09 (0.30-14.2) 0.44 <0.001 0.96 (0.32-2.9) 0.95
  Serum creatinine at 1 year            
    <1.2 mg/dL N/A     Ref Ref  
    ≥1.2 mg/dL N/A     0.158 0.41 (0.16-1.07) 0.07
  Functional status at 1 year N/A     <0.001 0.94 (0.92-0.97) <0.001
  FEV1 predicted at 1 year N/A     <0.001 0.96 (0.93-0.99) 0.01
  FVC predicted at 1 year N/A     <0.001    
  Oxygen requirement at 1 year N/A     <0.001    
Table 3 Multivariable Cox regression of selected predictors of 3-year risk of death stratified by 1-year predicted FEV1
1
Rosengard BR, Feng S, Alfrey EJ, et al. Report of the Crystal City meeting to maximize the use of organs recovered from the cadaver donor[J]. Am J Transplant, 2002, 2(8): 701-711.
2
Mascia L, Pasero D, Slutsky AS, et al. Effect of a lung protective strategy for organ donors on eligibility and availability of lungs for transplantation: a randomized controlled trial[J]. JAMA, 2010, 304(23): 2620-2627.
3
Van Raemdonck D, Neyrinck A, Verleden GM, et al. Lung donor selection and management[J]. Proc Am Thorac Soc, 2009, 6(1): 28-38.
4
D'Cunha HC, Rojas M. Ex Vivo Lung Perfusion: Past, Present, and Future[J]. ASAIO J, 2018, 64(2): 135-139.
5
Loor G, Warnecke G, Villavicencio MA, et al. Portable normothermic ex-vivo lung perfusion, ventilation, and functional assessment with the Organ Care System on donor lung use for transplantation from extended-criteria donors (EXPAND): a single-arm, pivotal trial[J]. Lancet Respir Med, 2019, 7(11): 975-984.
6
Mehaffey JH, Charles EJ, Sharma AK, et al. Airway pressure release ventilation during ex vivo lung perfusion attenuates injury[J]. J Thorac Cardiovasc Surg, 2017, 153(1): 197-204.
7
Kaplan LJ, Bailey H, Formosa V. Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome[J]. Crit Care, 2001, 5(4): 221-226.
8
Andrews P, Habashi N. Airway pressure release ventilation[J]. Curr Probl Surg, 2013, 50(10): 462-470.
9
Hanna K, Seder CW, Weinberger JB, et al. Airway pressure release ventilation and successful lung donation[J]. Arch Surg, 2011, 146(3): 325-328.
10
Daoud EG, Farag HL, Chatburn RL. Airway pressure release ventilation: what do we know?[J]. Respir Care, 2012, 57(2): 282-292.
11
Powner DJ, Graham R. Airway pressure release ventilation during adult donor care[J]. Prog Transplant, 2010, 20(3): 269-273.
12
Chen JM, Sinha P, Rajasinghe HA, et al. Do donor characteristics really matter? Short- and long-term impact of donor characteristics on recipient survival, 1995-1999[J]. J Heart Lung Transplant, 2002, 21(5): 608-610.
13
Stehlik J, Feldman DS, Brown RN, et al. Interactions among donor characteristics influence post-transplant survival: a multi-institutional analysis[J]. J Heart Lung Transplant, 2010, 29(3): 291-298.
14
Cypel M, Keshavjee S. Expansion of the donor lung pool: use of lungs from smokers[J]. Lancet, 2012, 380(9843): 709-711.
15
Kopp BT, Groner J, Tobias JD, et al. Cigarette Smoking Effect on Survival After Lung Transplant in Cystic Fibrosis[J]. Exp Clin Transplant, 2015, 13(6): 529-534.
16
Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation[J]. Crit Care Med, 2005, 33(3 Suppl): S228-S240.
17
Zhou Y, Jin X, Lv Y, et al. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome[J]. Intensive Care Med, 2017, 43(11): 1648-1659.
No related articles found!
阅读次数
全文


摘要