切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2023, Vol. 10 ›› Issue (02) : 98 -105. doi: 10.3877/cma.j.issn.2095-8773.2023.02.06

论著

单细胞转录组分析巨噬细胞帽状蛋白对食管鳞癌细胞增殖和转移的影响
李世浩, 王玉姣, 李子豪, 吴彬, 盛银良, 齐宇()   
  1. 450052 郑州,郑州大学第一附属医院胸外科
  • 收稿日期:2022-12-29 修回日期:2023-02-05 接受日期:2023-05-15 出版日期:2023-05-28
  • 通信作者: 齐宇

Single cell transcriptome analysis of macrophage cap protein on proliferation and metastasis of esophageal squamous cell carcinoma cells

Shihao Li, Yujiao Wang, Zihao Li, Bin Wu, Yinliang Sheng, Yu Qi()   

  1. Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
  • Received:2022-12-29 Revised:2023-02-05 Accepted:2023-05-15 Published:2023-05-28
  • Corresponding author: Yu Qi
引用本文:

李世浩, 王玉姣, 李子豪, 吴彬, 盛银良, 齐宇. 单细胞转录组分析巨噬细胞帽状蛋白对食管鳞癌细胞增殖和转移的影响[J/OL]. 中华胸部外科电子杂志, 2023, 10(02): 98-105.

Shihao Li, Yujiao Wang, Zihao Li, Bin Wu, Yinliang Sheng, Yu Qi. Single cell transcriptome analysis of macrophage cap protein on proliferation and metastasis of esophageal squamous cell carcinoma cells[J/OL]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2023, 10(02): 98-105.

目的

探讨巨噬细胞帽状蛋白(CAPG)在食管鳞状细胞癌(ESCC)组织中的表达水平及其对ESCC细胞体外迁移、增殖、侵袭的影响以及相关机制的影响。

方法

通过对来自基因表达数据库(GEO)的ESCC单细胞转录组数据进行综合分析,以揭示肿瘤间的异质性。整合和标准化GSE188900数据集的ESCC样本数据,采用主成分分析(PCA)对标准化数据进行降维和聚类,采用Single R算法注释细胞,使用inferCNV R包识别肿瘤细胞。最终确定食管上皮细胞为肿瘤细胞来源,并对高变基因进行基因集变异分析(GSVA)。随后,采用实时定量反转录聚合酶链反应(qRT-PCR)验证CAPG在ESCC组织样本和正常样本中的表达量。靶向CAPG的小片段干扰RNA(siRNA)转染人ESCC细胞EC1,以降低EC1细胞中CAPG的表达。通过体外功能实验验证CAPG对EC1细胞的增殖、迁移和侵袭等能力的影响。最后,通过qRT-PCR验证CAPG对ESCC细胞中上皮-间质转化(EMT)通路相关分子表达的影响。

结果

通过对ESCC单细胞测序数据分析,发现食管上皮细胞为肿瘤细胞来源,而且EMT通路相关基因在食管上皮细胞中显著富集。将上皮细胞相关基因与EMT通路相关基因取交集得到核心基因:CAPG。与正常组织相比,ESCC组织中CAPG表达明显上调。其次,体外功能实验表明,CAPG敲低显著影响人ESCC细胞EC1的增殖、迁移和侵袭,而且CAPG敲除影响多个EMT相关分子的表达。最后,CAPG作为EMT通路相关基因的成员,促进ESCC中肿瘤细胞的克隆性增殖和转移。

结论

CAPG在ESCC中高表达,具有促进ESCC细胞增殖、迁移和侵袭的作用;并且CAPG敲除影响多个EMT通路相关分子的表达。

Objective

To investigate the expression level of macrophage-capping protein (CAPG) in esophageal squamous cell carcinoma (ESCC) and its effect on migration, proliferation and invasion of ESCC cells in vitro as well as the related mechanisms.

Methods

Comprehensive analysis for single cell transcriptome data of ESCC from Gene Expression Omnibus (GEO) datasets was performed in order to reveal the tumor heterogeneity. After raw data from GSE188900 was integrated and standardized, Principal Component Analysis (PCA) was used for dimensionality reduction and clustering of the standardized data. Then, the Single R algorithm was used for cell annotation, and the inferCNV R package was used to identify tumor cells. Esophageal epithelial cells were finally identified as tumor cells and Gene Set Variation Analysis (GSVA) was performed on highly variable genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verified the expression level of hub gene in esophageal squamous cell carcinoma patient samples. Next, small interfering RNA (siRNA) targeting CAPG was transfected into human esophageal squamous cell carcinoma cell line EC1 in order to knock down the expression of CAPG in EC1 cells. In vitro functional assays was performed to verify the effect of CAPG on EC1 cells, including proliferation, migration, invasion and wound-healing assays. Finally, the effect of CAPG knockout on the expression of EMT pathway-related genes in esophageal squamous cell carcinoma cells was verified by qRT-PCR.

Results

The single cell sequencing data of esophageal squamous cell carcinoma showed that esophageal epithelial cells were the source of tumor cells and EMT pathway-related genes were significantly enriched in esophageal epithelial cells. We intersected epithelial cells-related genes with EMT pathway-related genes to obtain the hub gene: CAPG. The expression of CAPG was significantly higher in esophageal squamous cell carcinoma tissues compared to normal tissues. In vitro functional experiments demonstrated that the knockout of CAPG markedly impeded the proliferation, migration and invasion abilities of esophageal squamous cell carcinoma cells. Furthermore, CAPG knockout influenced the expression of several genes associated with EMT pathway. Finally, CAPG acts as a member of EMT pathway-related genes and promotes clonal proliferation and metastasis of ESCC cells.

Conclusions

In esophageal squamous cell carcinoma tissue, CAPG is significantly up-regulated and promotes the proliferation, migration, and invasion abilities of ESCC cells. Additionally, knockout of CAPG affects the expression of several genes related to EMT pathway.

图1 上皮细胞亚群的分析以及核心基因的获取。A:4个上皮细胞亚群的inferCNV分析,以B细胞作为参考亚群。B:箱式图展示4个上皮细胞亚群的CNV评分,其中上皮细胞(1)CNV评分最高。C:通过平均层次聚类和动态树裁剪,将无标度mRNA网络聚类为9个模块。D:热图展示上皮细胞(1)相关基因与ESCA患者Stage、T、N和M分期的关系。E:利用TCGA表达矩阵和临床数据进行CAPG生存分析
图2 CAPG在各个亚群中的分布以及相应亚群的拟时序分析。A:22个细胞亚群注释后的分布状态。B:CAPG在22个细胞亚群中的整体分布情况。C:CAPG在22个细胞亚群中的表达水平。D:T细胞、CD4+T细胞和CD8+T细胞的拟时序分析。E:4个上皮细胞亚群的拟时序分析
图3 CAPG相关的lncRNAs的研究。A:通过平均层次聚类和动态树裁剪,将无标度lncRNA网络聚类为8个模块。B:热图显示模块与临床性状(Stage、T和N分期)、CAPG表达水平之间的相关性。C:通过MCC算法识别绿色模块前12位的核心lncRNAs。D:核心lncRNAs与CAPG表达水平之间的相关性
1
Rustgi AKEl-Serag HB.Esophageal carcinoma[J].N Engl J Med2014371(26):2499-2509.
2
Domper Arnal MJFerrández Arenas áLanas Arbeloa á.Esophageal cancer:Risk factors,screening and endoscopic treatment in Western and Eastern countries[J].World J Gastroenterol201521(26):7933-7943.
3
Du BShim JS.Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer[J]. Molecules201621(7):965.
4
Greenburg GHay ED.Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells[J].J Cell Biol198295(1):333-339.
5
Nieto MAHuang RYJackson RA,et al.EMT:2016[J].Cell2016166(1):21-45.
6
Shibue TWeinberg RA.EMT,CSCs,and drug resistance:the mechanistic link and clinical implications[J].Nat Rev Clin Oncol201714(10):611-629.
7
Yeung KTYang J.Epithelial-mesenchymal transition in tumor metastasis[J].Mol Oncol201711(1):28-39.
8
Zeng KHe BYang BB,et al.The pro-metastasis effect of circANKS1B in breast cancer[J].Mol Cancer201817(1):160.
9
Tonack SPatel SJalali M,et al.Tetracycline-inducible protein expression in pancreatic cancer cells:effects of CapG overexpression[J].World J Gastroenterol201117(15):1947-1960.
10
Che DZhang SJing Z,et al.Macrophages induce EMT to promote invasion of lung cancer cells through the IL-6-mediated COX-2/PGE(2)/β-catenin signalling pathway[J].Mol Immunol201790:197-210.
11
Liu YYe GHuang L,et al.Single-cell transcriptome analysis demonstrates inter-patient and intra-tumor heterogeneity in primary and metastatic lung adenocarcinoma[J].Aging (Albany NY)202012(21):21559-21581.
12
Kim KTLee HWLee HO,et al.Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells[J].Genome Biol201516(1):127.
13
Bettermann KMehta AKHofer EM,et al.Keratin 18-deficiency results in steatohepatitis and liver tumors in old mice:A model of steatohepatitis-associated liver carcinogenesis[J].Oncotarget20167(45):73309-73322.
14
Bray FFerlay JSoerjomataram I,et al.Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin201868(6):394-424.
15
Ahmed OAjani JALee JH.Endoscopic management of esophageal cancer[J].World J Gastrointest Oncol201911(10):830-841.
16
Barsouk ARawla PHadjinicolaou AV,et al.Targeted Therapies and Immunotherapies in the Treatment of Esophageal Cancers[J].Med Sci(Basel)20197(10):100.
17
Zhang YWeinberg RA.Epithelial-to-mesenchymal transition in cancer:complexity and opportunities[J].Front Med201812(4):361-373.
18
Polyak KWeinberg RA.Transitions between epithelial and mesenchymal states:acquisition of malignant and stem cell traits[J].Nat Rev Cancer20099(4):265-273.
19
Lim JThiery JP.Epithelial-mesenchymal transitions:insights from development[J].Development2012139(19):3471-3486.
20
Johnston PAYu FXReynolds GA,et al.Purification and expression of gCap39. An intracellular and secreted Ca2(+)-dependent actin-binding protein enriched in mononuclear phagocytes[J].J Biol Chem1990265(29):17946-17952.
21
Watari ATakaki KHigashiyama S,et al.Suppression of tumorigenicity,but not anchorage independence,of human cancer cells by new candidate tumor suppressor gene CapG[J].Oncogene200625(56):7373-7380.
22
Witke WLi WKwiatkowski DJ,et al.Comparisons of CapG and gelsolin-null macrophages:demonstration of a unique role for CapG in receptor-mediated ruffling,phagocytosis,and vesicle rocketing[J].J Cell Biol2001154(4):775-784.
23
Parikh SSLitherland SAClare-Salzler MJ,et al.CapG(-/-) mice have specific host defense defects that render them more susceptible than CapG(+/+) mice to Listeria monocytogenes infection but not to Salmonella enterica serovar Typhimurium infection[J].Infect Immun200371(11):6582-6590.
24
Pollard TDBlanchoin LMullins RD.Molecular mechanisms controlling actin filament dynamics in nonmuscle cells[J].Annu Rev Biophys Biomol Struct200029:545-576.
25
De Corte VVan Impe KBruyneel E,et al.Increased importin-beta-dependent nuclear import of the actin modulating protein CapG promotes cell invasion[J].J Cell Sci2004117(Pt 22):5283-5292.
26
Huang SChi YQin Y,et al.CAPG enhances breast cancer metastasis by competing with PRMT5 to modulate STC-1 transcription[J].Theranostics20188(9):2549-2564.
[1] 陈金业, 凌潜龙, 朱冰, 骆杰. 补体B因子在结直肠癌中的表达及临床意义[J/OL]. 中华普通外科学文献(电子版), 2024, 18(03): 192-198.
[2] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[3] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[4] 胡思平, 熊性宇, 徐航, 杨璐. 衰老相关分泌表型因子在前列腺癌发生发展中的作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 425-434.
[5] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[6] 赵旭鹏, 王集琛, 田硕, 李宏召, 李修彬, 张旭. EP300 通过上调FKBP10 促进膀胱肿瘤细胞迁移和侵袭[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 264-274.
[7] 黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.
[8] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[9] 李彦浇, 梁雷, 金钫, 王智伟. 银杏内酯B通过调控miR-24-3p对人牙周膜干细胞增殖、成骨分化的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 229-235.
[10] 杨兴业, 彭旭云, 曾倩, 梁伟铖, 肖翠翠, 郑俊, 姚嘉. LMO7通过靶向铁死亡促进肝细胞癌生长[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 370-376.
[11] 崔精, 鲍一帆, 沈晓明, 杨增辉, 高森, 鲍传庆. 结直肠癌中circMFSD12对肿瘤细胞功能及5-FU敏感性的调控[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 294-302.
[12] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
[13] 靳英, 付小霞, 陈美茹, 袁璐, 郝力瑶. CD147调控MAPK信号通路对结肠癌细胞增殖和凋亡的影响及机制研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 474-480.
[14] 王睿臻, 段晓峰, 姜宏景. 食管鳞癌喉返神经旁淋巴结清扫及功能保护相关研究进展[J/OL]. 中华胸部外科电子杂志, 2024, 11(03): 201-207.
[15] 尤旭颖, 吴苏果, 张泽, 王坤宁, 袁红霞. 食管鳞状细胞癌及癌前病变的诊疗研究进展[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(03): 163-168.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?