切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2024, Vol. 11 ›› Issue (01) : 31 -39. doi: 10.3877/cma.j.issn.2095-8773.2024.01.04

论著

食管鳞状细胞癌手术切缘阳性大样本回顾性研究及其临床预测模型的建立与验证
李智毓1, 李昌顶2, 聂鑫2, 倪琨涵2, 韩泳涛2,(), 冷雪峰2,()   
  1. 1. 614000 乐山,乐山市人民医院胸外科
    2. 610041 成都,四川省肿瘤临床医学研究中心,四川省肿瘤医院·研究所,四川省癌症防治中心,电子科技大学附属肿瘤医院胸外科
  • 收稿日期:2023-07-20 修回日期:2023-11-16 接受日期:2024-02-04 出版日期:2024-02-28
  • 通信作者: 韩泳涛, 冷雪峰
  • 基金资助:
    国家重点研发计划(2022YFC2403400); 四川省科技厅国际合作项目(24GJHZ0166); 四川省科技厅四川省重点研发项目(2023YFS0044、2023YFQ0056、2022YFQ0008); 吴阶平医学基金会(320.6750.2020-15-3); 四川省临床重点专科建设项目

Large-scale retrospective study of positive surgical margins in esophageal squamous cell carcinoma and the establishment and validation of a clinical predictive model

Zhiyu Li1, Changding Li2, Xin Nie2, Kunhan Ni2, Yongtao Han2,(), Xuefeng Leng2,()   

  1. 1. Department of Thoracic Surgery, The People’s Hospital of Leshan, Leshan 614000, China
    2. Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
  • Received:2023-07-20 Revised:2023-11-16 Accepted:2024-02-04 Published:2024-02-28
  • Corresponding author: Yongtao Han, Xuefeng Leng
引用本文:

李智毓, 李昌顶, 聂鑫, 倪琨涵, 韩泳涛, 冷雪峰. 食管鳞状细胞癌手术切缘阳性大样本回顾性研究及其临床预测模型的建立与验证[J/OL]. 中华胸部外科电子杂志, 2024, 11(01): 31-39.

Zhiyu Li, Changding Li, Xin Nie, Kunhan Ni, Yongtao Han, Xuefeng Leng. Large-scale retrospective study of positive surgical margins in esophageal squamous cell carcinoma and the establishment and validation of a clinical predictive model[J/OL]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2024, 11(01): 31-39.

目的

食管鳞状细胞癌(ESCC)在中国的发病率及死亡率高。术后切缘肿瘤残留往往提示预后不良。本研究旨在回顾性分析切缘阳性现状并建立一个可行的临床预测模型,以预测ESCC患者术后出现手术切缘阳性(PSM)的可能性并加以验证。

方法

回顾性分析四川省肿瘤医院食管癌全程管理数据库(SCCH-ECCM database)2010年1月至2017年12月共2 846名因ESCC接受手术治疗的患者,分析术后病理结果和手术相关临床资料,识别出手术切缘具有肉眼可见残留肿瘤(R2)和镜下可见残留肿瘤(R1)的患者,并定义为PSM。应用logistic回归分析确定独立危险因素,应用列线图构建预测模型,通过Bootstrap法(重复抽样1 000次后),绘制校准曲线(calibration curve)和受试者工作特征(ROC)曲线评价该模型有效性。对比实际风险和预测风险;绘制决策曲线(DCA),通过计算不同阈值概率下的净效益来评估列线图临床应用价值。

结果

本研究最终纳入205名(7.2%)被诊断为PSM切除的患者。Logistic回归分析显示,性别、淋巴结清扫数目、肿瘤位置、pTNM分期和胸部手术方式是PSM的独立影响因素。列线图构建预测模型,ROC曲线下面积为0.796(95%CI 0.763~0.828,P<0.001),校准曲线显示预测概率与实际概率之间具有良好的一致性。

结论

PSM是影响患者术后治疗决策和预后的重要因素之一,本研究建立并验证了一个可预测ESCC患者术后切缘阳性风险的列线图,在食管癌患者术前评估和治疗决策上有潜在的应用价值。

Objective

Esophageal squamous cell carcinoma (ESCC) has a high incidence and mortality rate in China. The presence of positive surgical margins (PSM) after surgery suggests a poor prognosis. Therefore, this study aims to establish a feasible clinical prediction model to predict and verify the likelihood of PSM after surgery in ESCC patients.

Methods

By searching the Sichuan Cancer Hospital and Institute Esophageal Cancer Case Management Database (SCH-ECCM database) from January 2010 to December 2017, a total of 2 846 patients who underwent ESCC radical surgery at the hospital were reviewed. After retrospectively analyzing the postoperative pathological data and clinical information, patients who have visible residual tumor on the surgical margin with the naked eye (R2) or microscopic residual tumor (R1) are identified and defined as having PSM. Logistic regression analysis was used to determine independent risk factors. Nomogram was used to construct a predictive model, and a calibration curve was plotted to compare actual risk with predicted risk. A decision curve analysis (DCA) was performed to evaluate the clinical utility of nomogram. Receiver operating characteristic (ROC) curve can be plotted to evaluate the validity of prediction model, and Bootstrap Method was used for internal validation.

Results

This study included 205 patients (7.2%) diagnosed with PSM. Logistic regression analysis showed that gender, number of lymph nodes examined, tumor location, pathological TNM stage, and thoracic surgical incision were independent risk factors for PSM. We used a nomogram to evaluate the performance of the predictive model, with a ROC area of 0.796 (95% CI 0.763~0.828, P<0.001) and a calibration curve showing good consistency between predicted and actual probabilities.

Conclusions

PSM is one of the important factors that influence postoperative treatment decisions and prognosis of patients. The nomogram we established to predict positive resection margin in patients with esophageal squamous cell carcinoma has potential clinical application value for preoperative assessment and treatment decision-making.

表1 患者的临床特征
基线特征 R0(n=2 641) 非R0(n=205) P
性别[例(%)]     0.060
498(18.9) 23(11.2)  
2 143(81.1) 182(88.8)  
年龄[岁,中位数(范围)] 62(34~90) 61(35~81) 0.237
KPS[例(%)]     0.165
<90 1 118(42.3) 97(47.3)  
≥90 1 523(57.7) 108(52.7)  
BMI[kg/m2,中位数(范围)] 21.16(12.19~35.14) 20.55(14.98~28.62) 0.001
肿瘤位置[例(%)]     <0.001
上段 632(23.9) 85(41.5)  
中段 1 428(54.1) 88(42.9)  
下段 581(22.0) 32(15.6)  
病理T分期[例(%)]     <0.001
T1 331(12.5) 13(6.3)  
T2 514(19.5) 29(14.1)  
T3 1 608(60.9) 74(36.1)  
T4 188(7.1) 89(43.4)  
病理N分期[例(%)]     <0.001
N0 1 212(45.9) 63(30.7)  
N1 770(29.2) 55(26.8)  
N2 446(16.9) 49(23.9)  
N3 213(8.1) 38(18.5)  
病理TNM分期[例(%)]     <0.001
331(12.5) 8(3.9)  
878(33.2) 28(13.7)  
1 154(43.7) 92(44.9)  
278(10.5) 77(37.6)  
淋巴结清扫数目[中位数(范围)] 20(0~112) 17(0~54) 0.001
脉管浸润[例(%)]     0.213
439(16.6) 41(20.0)  
2 202(83.4) 164(80.0)  
神经侵犯[例(%)]     0.865
477(18.1) 38(18.5)  
2 164(81.9) 167(81.5)  
多灶性病变[例(%)]     <0.001
83(3.1) 189(92.2)  
2 558(96.9) 16(7.8)  
手术方式[例(%)]     <0.001
开放 1 327(50.2) 159(77.6)  
腔镜 1 314(49.8) 46(22.4)  
吻合部位[例(%)]     0.306
颈部 1 896(71.8) 154(75.1)  
胸部或腹部 745(28.2) 51(24.9)  
术前治疗[例(%)]     0.010
54(2.0) 12(5.9)  
2 587(98.0) 193(94.1)  
表2 关于PSM患者的单因素和多因素logistic回归分析
基线特征 单因素分析 多因素分析
OR(95%CI P OR(95%CI P
性别   0.007   0.008
Ref.   Ref.  
1.839(1.179~2.868)   1.952(1.194~3.189)  
年龄 0.989(0.973~1.006) 0.218    
KPS   0.165    
<90 Ref.      
≥90 0.817(0.615~1.087)      
BMI 0.922(0.877~0.97) 0.002 0.966(0.911~1.024) 0.242
肿瘤位置   <0.001   <0.001
上段 Ref.   Ref.  
中段 0.458(0.335~0.626) <0.001 0.393(0.273~0.564) <0.001
下段 0.411(0.269~0.624) <0.001 0.293(0.18~0.475) <0.001
pT分期   <0.001   <0.001
T1 Ref.   Ref.  
T2 1.437(0.736~2.803) 0.288 0.442(0.176~1.114) 0.083
T3 1.172(0.642~2.138) 0.605 0.256(0.102~0.612) 0.002
T4 12.054(6.557~22.158) <0.001 1.294(0.464~3.608) 0.622
pN分期   <0.001   0.107
N0 Ref.   Ref.  
N1 1.374(0.947~1.995) 0.095 0.508(0.269~0.957) 0.036
N2 2.114(1.433~3.118) <0.001 0.753(0.341~1.651) 0.475
N3 3.432(2.237~5.266) <0.001 0.708(0.214~2.342) 0.571
pTNM分期   <0.001   <0.001
Ref.   Ref.  
1.319(0.595~2.924) 0.495 2.983(1.000~8.892) 0.050
3.299(1.585~6.863) 0.001 9.102(2.524~32.826) 0.001
11.46(5.439~24.147) <0.001 16.288(3.664~72.401) <0.001
淋巴结清扫个数 0.978(0.965~0.992) 0.002 0.965(0.948~0.983) <0.001
脉管浸润   0.214    
Ref.      
0.797(0.558~1.14)      
神经浸润   0.865    
Ref.      
0.969(0.672~1.397)      
多灶性病变   0.001   0.063
Ref.   Ref.  
0.383(0.22~0.668)   0.548 (0.29~1.033)  
手术方式   <0.001   <0.001
开放 Ref.   Ref.  
腔镜 0.292(0.209~0.409)   0.349 (0.233~0.523)  
吻合部位   0.307    
颈部 Ref.      
胸部或腹部 0.843(0.607~1.170)      
术前治疗   0.001   0.195
Ref.   Ref.  
0.336(0.177~0.638)   0.607 (0.286~1.291)  
图1 基于PSM独立影响因素的列线图。PSM:手术切缘阳性
图2 ROC曲线预测模型AUC=0.796(95%CI:0.763~0.828,P<0.001)
图3 校准曲线模型的预测风险与实际风险
图4 决策曲线预测模型的风险阈值和效益比率
1
Uhlenhopp DJThen EOSunkara T,et al.Epidemiology of esophageal cancer: update in global trends, etiology and risk factors[J].Clin J Gastroenterol202013(6):1010-1021.
2
Bray FFerlay JSoerjomataram I,et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin201868(6):394-424.
3
Ghadban TReeh MKoenig AM,et al.Prognostic Significant or Not? The Positive Circumferential Resection Margin in Esophageal Cancer: Impact on Local Recurrence and Overall Survival in Patients Without Neoadjuvant Treatment[J].Ann Surg2017266(6):988-994.
4
Pucher PHGreen MBateman AC,et al.Variation in histopathological assessment and association with surgical quality indicators following oesophagectomy[J].Br J Surg2021108(1):74-79.
5
Markar SRGronnier CDuhamel A,et al.Significance of Microscopically Incomplete Resection Margin After Esophagectomy for Esophageal Cancer[J].Ann Surg2016263(4):712-718.
6
Yang ZLin HWang Z,et al.The prognostic significance of the circumferential resection margin in esophageal squamous cell carcinoma patients without neoadjuvant treatment[J].BMC Cancer202222(1):1180.
7
Worrell SG.Esophageal Cancer and Surgical Margins: When a Positive Is a Negative[J].Ann Surg Oncol202027(5):1316-1317.
8
Javidfar JSpeicher PJHartwig MG,et al.Impact of Positive Margins on Survival in Patients Undergoing Esophagogastrectomy for Esophageal Cancer[J].Ann Thorac Surg2016101(3):1060-1067.
9
Wu JHu YXu L.Positive circumferential resection margin in locally advanced esophageal cancer: an updated systematic review and meta-analysis[J].Updates Surg202274(4):1187-1197.
10
Orosco RKTapia VJCalifano JA,et al.Positive Surgical Margins in the 10 Most Common Solid Cancers[J].Sci Rep20188(1):5686.
11
Defize ILGoense LBorggreve AS,et al.Risk Factors for Tumor Positive Resection Margins After Neoadjuvant Chemoradiotherapy for Esophageal Cancer: Results From the Dutch Upper GI Cancer Audit: A Nationwide Population-Based Study[J].Ann Surg2023277(2):e313-e319.
12
Darwish MBNagatomo KJackson T,et al.Minimally Invasive Esophagectomy for Achieving R0[J].JSLS202024(4):e2020.00060.
13
Schlick CJRKhorfan ROdell DD,et al.Margin Positivity in Resectable Esophageal Cancer: Are there Modifiable Risk Factors?[J].Ann Surg Oncol202027(5):1496-1507.
14
Schlick CJRBentrem DJ.ASO Author Reflections: Margin Positivity Following Esophageal Cancer Resection is Associated with Treatment Decisions[J].Ann Surg Oncol202027(5):1508-1509.
15
Saddoughi SAMitchell KGAntonoff MB,et al.Analysis of Esophagectomy Margin Practice and Survival Implications[J].Ann Thorac Surg2022113(1):209-216.
16
Li HXZheng XYTian D.Intraoperative Esophagectomy Positive Margins: Re-Resection or Not?[J].Ann Thorac Surg2022113(4):1390-1391.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 蒲彦婷, 吴翠先, 兰玉梅. 类风湿关节炎患者骨质疏松症风险预测列线图模型构建[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 596-603.
[3] 庄燕, 戴林峰, 张海东, 陈秋华, 聂清芳. 脓毒症患者早期生存影响因素及Cox 风险预测模型构建[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 372-378.
[4] 李霞林, 贺芳. 产后出血风险评估和早期预警系统[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 498-503.
[5] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[6] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[7] 屈勤芳, 束方莲. 盆腔器官脱垂患者盆底重建手术后压力性尿失禁发生的影响因素及列线图预测模型构建[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 606-612.
[8] 犹成亿, 尤恒, 叶东樊, 张雯, 刘禹, 王仁宇, 苏琳茜, 甘慧, 徐智. 基于3D Res U-Net-Faster RCNN 技术和CT 影像学特征的肺结节性质预测模型的建立[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 673-679.
[9] 公宇, 廖媛, 尚梅. 肝细胞癌TACE术后复发影响因素及预测模型建立[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 818-824.
[10] 王贝贝, 崔振义, 王静, 王晗妍, 吕红芝, 李秀婷. 老年股骨粗隆间骨折患者术后贫血预测模型的构建与验证[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 355-362.
[11] 孙晗, 于冰, 武侠, 周熙朗. 基于循环肿瘤DNA 甲基化的结直肠癌筛查预测模型的构建与验证[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 500-506.
[12] 韦巧玲, 黄妍, 赵昌, 宋庆峰, 陈祖毅, 黄莹, 蒙嫦, 黄靖. 肝癌微波消融术后中重度疼痛风险预测列线图模型构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 715-721.
[13] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[14] 颜世锐, 熊辉. 感染性心内膜炎合并急性肾损伤患者的危险因素探索及死亡风险预测[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 618-624.
[15] 董晟, 郎胜坤, 葛新, 孙少君, 薛明宇. 反向休克指数乘以格拉斯哥昏迷评分对老年严重创伤患者发生急性创伤性凝血功能障碍的预测价值[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 541-547.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?