切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2024, Vol. 11 ›› Issue (02) : 120 -129. doi: 10.3877/cma.j.issn.2095-8773.2024.02.08

综述

CT影像组学在肺结节鉴别诊断中的价值
刘云泽1, 李宬润1, 任红1, 郭俊唐1, 刘阳1,()   
  1. 1. 100853 北京,中国人民解放军总医院研究生院,第一医学中心胸外科
  • 收稿日期:2024-02-07 修回日期:2024-03-07 接受日期:2024-03-22 出版日期:2024-05-28
  • 通信作者: 刘阳
  • 基金资助:
    北京市首都临床特色诊疗技术研究(Z221100007422124)

Value of CT radiomics in the differential diagnosis of lung nodules

Yunze Liu1, Chengrun Li1, Hong Ren1, Juntang Guo1, Yang Liu1,()   

  1. 1. Department of Thoracic Surgery, First Medical Centre, Graduate School, General Hospital of the Chinese People’s Liberation Army, Beijing 100853, China
  • Received:2024-02-07 Revised:2024-03-07 Accepted:2024-03-22 Published:2024-05-28
  • Corresponding author: Yang Liu
引用本文:

刘云泽, 李宬润, 任红, 郭俊唐, 刘阳. CT影像组学在肺结节鉴别诊断中的价值[J/OL]. 中华胸部外科电子杂志, 2024, 11(02): 120-129.

Yunze Liu, Chengrun Li, Hong Ren, Juntang Guo, Yang Liu. Value of CT radiomics in the differential diagnosis of lung nodules[J/OL]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2024, 11(02): 120-129.

"新冠后时代"到来,胸部CT的应用更加广泛,导致肺结节的检出率越来越高,不同种类结节的治疗和预后区别很大,所以准确鉴别诊断有重要意义。传统的临床特征和影像学对于结节的鉴别存在较高的差错率,而影像组学的研究在近十年内迅速兴起,通过计算机挖掘影像中的高通量数据来辅助临床决策,提高了诊断效能,使得患者获益。本文综述了CT影像组学概述及其在肺结节鉴别诊断中的价值,并且讨论了其优势、挑战和不足,展望了未来影像组学的发展方向。

In the post-COVID era, the application of chest CT has become increasingly widespread, leading to a higher detection rate of pulmonary nodules. Given the substantial variability in treatment and prognosis among different types of nodules, accurate identification and diagnosis are of paramount importance. Traditional clinical features and radiographic assessments for nodule differentiation still bear a significant risk of error. However, the field of radiomics has emerged in the past decade, utilizing computer algorithms to seek high-throughput data from images to aid clinical decision-making, thus enhancing diagnostic efficacy and benefiting patients. This article presents an overview of CT radiomics and its value in the differential diagnosis of pulmonary nodules. It also discusses the advantages, challenges, and limitations of this approach and looks forward to the future directions in the development of radiomics.

图1 影像组学流程简图
表1 CT影像组学对于肺结节诊断治疗价值汇总表
1
Bray FFerlay JSoerjomataram I,et al.Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin201868(6):394-424.
2
Sun SWang YHGao X,et al.Current perspectives and trends in nanoparticle drug delivery systems in breast cancer:bibliometric analysis and review[J].Front Bioeng Biotechnol202311:1253048.
3
Li NTan FChen W,et al.One-off low-dose CT for lung cancer screening in China: a multicentre, population-based, prospective cohort study[J].Lancet Respir Med202210(4):378-391.
4
National Lung Screening Trial Research Team;Aberle DRAdams AM,et al.Reduced lung-cancer mortality with low-dose computed tomographic screening[J].N Engl J Med2011365(5):395-409.
5
Becker NMotsch ETrotter A,et al.Lung cancer mortality reduction by LDCT screening-Results from the randomized German LUSI trial[J].Int J Cancer2020146(6):1503-1513.
6
Pastorino USilva MSestini S,et al.Prolonged lung cancer screening reduced 10-year mortality in the MILD trial: new confirmation of lung cancer screening efficacy[J].Ann Oncol201930(7):1162-1169.
7
Wang FTan FShen S,et al.Risk-stratified Approach for Never- and Ever-Smokers in Lung Cancer Screening: A Prospective Cohort Study in China[J].Am J Respir Crit Care Med2023207(1):77-88.
8
Zhao ZRSitu DRLau RWH,et al.Comparison of Segmentectomy and Lobectomy in Stage IA Adenocarcinomas[J].J Thorac Oncol201712(5):890-896.
9
Ost DGoldberg JRolnitzky L,et al.Survival after surgery in stage IA and IB non-small cell lung cancer[J].Am J Respir Crit Care Med2008177(5):516-523.
10
Mazzone PJLam L.Evaluating the Patient With a Pulmonary Nodule: A Review[J].JAMA2022327(3):264-273.
11
Gould MKTang TLiu IL,et al.Recent Trends in the Identification of Incidental Pulmonary Nodules[J].Am J Respir Crit Care Med2015192(10):1208-1214.
12
de Koning HJvan der Aalst CMde Jong PA,et al.Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial[J].N Engl J Med2020382(6):503-513.
13
Lambin PRios-Velazquez ELeijenaar R,et al.Radiomics: extracting more information from medical images using advanced feature analysis[J].Eur J Cancer201248(4):441-446.
14
Kumar VGu YBasu S,et al.Radiomics: the process and the challenges[J].Magn Reson Imaging201230(9):1234-1248.
15
Liu AWang ZYang Y,et al.Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram[J].Cancer Commun (Lond)202040(1):16-24.
16
Jeong WKJamshidi NFelker ER,et al.Radiomics and radiogenomics of primary liver cancers[J].Clin Mol Hepatol201925(1):21-29.
17
Chen TWu JCui C,et al.CT-based radiomics nomograms for preoperative prediction of diffuse-type and signet ring cell gastric cancer: a multicenter development and validation cohort[J].J Transl Med202220(1):38.
18
Miao SJia HCheng K,et al.Deep learning radiomics under multimodality explore association between muscle/fat and metastasis and survival in breast cancer patients[J].Brief Bioinform202223(6):bbac432.
19
Zhang JJin JAi Y,et al.Differentiating the pathological subtypes of primary lung cancer for patients with brain metastases based on radiomics features from brain CT images[J].Eur Radiol202131(2):1022-1028.
20
Mayerhoefer MEMaterka ALangs G,et al.Introduction to Radiomics[J].J Nucl Med202061(4):488-495.
21
McCague CRamlee SReinius M,et al.Introduction to radiomics for a clinical audience[J].Clin Radiol202378(2):83-98.
22
Liu ZWang SDong D,et al.The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology:Opportunities and Challenges[J].Theranostics20199(5):1303-1322.
23
Lohmann PBousabarah KHoevels M,et al.Radiomics in radiation oncology-basics,methods,and limitations[J].Strahlenther Onkol2020196(10):848-855.
24
Limkin EJSun RDercle L,et al.Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology[J].Ann Oncol201728(6):1191-1206.
25
Keek SALeijenaar RTJochems A,et al.A review on radiomics and the future of theranostics for patient selection in precision medicine[J].Br J Radiol201891(1091):20170926.
26
Kuhnert GBoellaard RSterzer S,et al.Impact of PET/CT image reconstruction methods and liver uptake normalization strategies on quantitative image analysis[J].Eur J Nucl Med Mol Imaging201643(2):249-258.
27
Yue WYZhang HTGao S,et al.Predicting Breast Cancer Subtypes Using Magnetic Resonance Imaging Based Radiomics With Automatic Segmentation[J].J Comput Assist Tomogr202347(5):729-737.
28
Huang BLin XShen J,et al.Accurate and Feasible Deep Learning Based Semi-Automatic Segmentation in CT for Radiomics Analysis in Pancreatic Neuroendocrine Neoplasms[J].IEEE J Biomed Health Inform202125(9):3498-3506.
29
Aerts HJVelazquez ERLeijenaar RT,et al.Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J].Nat Commun20145:4006.
30
Xu HZhu NYue Y,et al.Spectral CT-based radiomics signature for distinguishing malignant pulmonary nodules from benign[J].BMC Cancer202323(1):91.
31
Chen ALu LPu X,et al.CT-Based Radiomics Model for Predicting Brain Metastasis in Category T1 Lung Adenocarcinoma[J].AJR Am J Roentgenol2019213(1):134-139.
32
Zhao QWang JWYang L,et al.CT diagnosis of pleural and stromal invasion in malignant subpleural pure ground-glass nodules:an exploratory study[J].Eur Radiol201929(1):279-286.
33
Wu YLZhou Q.Combination Therapy for EGFR-Mutated Lung Cancer[J].N Engl J Med2023389(21):2005-2007.
34
Mattonen SAPalma DAJohnson C,et al.Detection of Local Cancer Recurrence After Stereotactic Ablative Radiation Therapy for Lung Cancer:Physician Performance Versus Radiomic Assessment[J].Int J Radiat Oncol Biol Phys201694(5):1121-1128.
35
Kammer MNLakhani DABalar AB,et al.Integrated Biomarkers for the Management of Indeterminate Pulmonary Nodules[J].Am J Respir Crit Care Med2021204(11):1306-1316.
36
Tanoue LTTanner NTGould MK,et al.Lung cancer screening[J].Am J Respir Crit Care Med2015191(1):19-33.
37
Ardila DKiraly APBharadwaj S,et al.End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography[J].Nat Med201925(6):954-961.
38
Rami-Porta RAsamura HTravis WD,et al.Lung cancer - major changes in the American Joint Committee on Cancer eighth edition cancer staging manual[J].CA Cancer J Clin201767(2):138-155.
39
Das SKFang KWXu L,et al.Integrative nomogram of intratumoral, peritumoral, and lymph node radiomic features for prediction of lymph node metastasis in cT1N0M0 lung adenocarcinomas[J].Sci Rep202111(1):10829.
40
Cong MYao HLiu H,et al.Development and evaluation of a venous computed tomography radiomics model to predict lymph node metastasis from non-small cell lung cancer[J].Medicine (Baltimore)202099(18):e20074.
41
Zhang HLiao MGuo Q,et al.Predicting N2 lymph node metastasis in presurgical stage I-II non-small cell lung cancer using multiview radiomics and deep learning method[J].Med Phys202350(4):2049-2060.
42
Chen LYu LLi X,et al.Value of CT Radiomics and Clinical Features in Predicting Bone Metastases in Patients with NSCLC[J].Contrast Media Mol Imaging20222022:7642511.
43
Coroller TPGrossmann PHou Y,et al.CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma[J].Radiother Oncol2015114(3):345-350.
44
E LLu LLi L,et al.Radiomics for Classifying Histological Subtypes of Lung Cancer Based on Multiphasic Contrast-Enhanced Computed Tomography[J].J Comput Assist Tomogr201943(2):300-306.
45
Eguchi TKondo RKawakami S,et al.Computed tomography attenuation predicts the growth of pure ground-glass nodules[J].Lung Cancer201484(3):242-247.
46
Kodama KHigashiyama MYokouchi H,et al.Natural history of pure ground-glass opacity after long-term follow-up of more than 2 years[J].Ann Thorac Surg200273(2):386-392.
47
Xiang WXing YJiang S,et al.Morphological factors differentiating between early lung adenocarcinomas appearing as pure ground-glass nodules measuring ≤10 mm on thin-section computed tomography[J].Cancer Imaging201414(1):33.
48
Sun YLi CJin L,et al.Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction[J].Eur Radiol202030(7):3650-3659.
49
Schneider JLLin JJShaw AT.ALK-positive lung cancer:a moving target[J].Nat Cancer20234(3):330-343.
50
Wang SYu HGan Y,et al.Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer:a multicohort study[J].Lancet Digit Health20224(5):e309-e319.
51
Huynh ECoroller TPNarayan V,et al.CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer[J].Radiother Oncol2016120(2):258-266.
52
卢楚鸣,陈艾琪,曹胜男,等.基于3D-CT影像组学预测小细胞肺癌经铂类化疗后脑转移的研究[J].临床放射学杂志202342(3):411-416.
53
Dercle LFronheiser MLu L,et al.Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics[J].Clin Cancer Res202026(9):2151-2162.
54
Gould MKAnanth LBarnett PG,et al.A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules[J].Chest2007131(2):383-388.
55
张桐睿,李军,申敏,等.CT影像组学结合肺癌血清肿瘤标志物预测非小细胞肺癌亚型的初步研究[J].中国CT和MRI杂志202321(3):65-67.
56
Balata HQuaife SLCraig C,et al.Early Diagnosis and Lung Cancer Screening[J].Clin Oncol (R Coll Radiol)202234(11):708-715.
57
Kim MGYang BRPark CM,et al.Preoperative percutaneous needle lung biopsy techniques and ipsilateral pleural recurrence in stage I lung cancer[J].Eur Radiol202232(4):2683-2692.
58
Kim YWKang HRKwon BS,et al.Low-dose chest computed tomographic screening and invasive diagnosis of pulmonary nodules for lung cancer in never-smokers[J].Eur Respir J202056(5):2000177.
59
Wang QSheng YJiang Z,et al.What Imaging Modality Is More Effective in Predicting Early Recurrence of Hepatocellular Carcinoma after Hepatectomy Using Radiomics Analysis:CT or MRI or Both[J].Diagnostics(Basel)202313(12):2012.
60
Beer LSahin HBateman NW,et al.Integration of proteomics with CT-based qualitative and radiomic features in high-grade serous ovarian cancer patients: an exploratory analysis[J].Eur Radiol202030(8):4306-4316.
61
Xu XZhang HLLiu QP,et al.Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma[J].J Hepatol201970(6):1133-1144.
62
Hu YXie CYang H,et al.Assessment of Intratumoral and Peritumoral Computed Tomography Radiomics for Predicting Pathological Complete Response to Neoadjuvant Chemoradiation in Patients With Esophageal Squamous Cell Carcinoma[J].JAMA Netw Open20203(9):e2015927.
63
Agosti AShaqiri EPaoletti M,et al.Deep learning for automatic segmentation of thigh and leg muscles[J].MAGMA202235(3):467-483.
64
Oreiller VAndrearczyk VJreige M,et al.Head and neck tumor segmentation in PET/CT:The HECKTOR challenge[J].Med Image Anal202277:102336.
65
Zwanenburg AVallières MAbdalah MA,et al.The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping[J].Radiology2020295(2):328-338.
66
Hagiwara AFujita SOhno Y,et al.Variability and Standardization of Quantitative Imaging: Monoparametric to Multiparametric Quantification, Radiomics, and Artificial Intelligence[J].Invest Radiol202055(9):601-616.
67
Visvikis DLambin PBeuschau Mauridsen K,et al.Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation[J].Eur J Nucl Med Mol Imaging202249(13):4452-4463.
68
Rompianesi GPegoraro FCeresa CD,et al.Artificial intelligence in the diagnosis and management of colorectal cancer liver metastases[J].World J Gastroenterol202228(1):108-122.
[1] 王亚红, 蔡胜, 葛志通, 杨筱, 李建初. 颅骨骨膜窦的超声表现一例[J/OL]. 中华医学超声杂志(电子版), 2024, 21(11): 1089-1091.
[2] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[3] 邱琳, 刘锦辉, 组木热提·吐尔洪, 马悦心, 冷晓玲. 超声影像组学对致密型乳腺背景中非肿块型乳腺癌的诊断价值[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(06): 353-360.
[4] 唐金侨, 叶宇佳, 王港, 赵彬, 马艳宁. 医学影像学检查方法在颞下颌关节紊乱病中临床应用研究进展[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 406-411.
[5] 冯旺, 马振中, 汤林花. CT扫描三维重建在肝内胆管细胞癌腹腔镜肝切除术中的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 104-107.
[6] 赵林娟, 吕婕, 王文胜, 马德茂, 侯涛. 超声引导下染色剂标记切缘的梭柱型和圆柱型保乳区段切除术的效果研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 634-637.
[7] 屈翔宇, 张懿刚, 李浩令, 邱天, 谈燚. USP24及其共表达肿瘤代谢基因在肝细胞癌中的诊断和预后预测作用[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 659-662.
[8] 熊鹰, 林敬莱, 白奇, 郭剑明, 王烁. 肾癌自动化病理诊断:AI离临床还有多远?[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 535-540.
[9] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[10] 李浩, 陈棋帅, 费发珠, 张宁伟, 李元东, 王硕晨, 任宾. 慢性肝病肝纤维化无创诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 863-867.
[11] 谭瑞义. 小细胞骨肉瘤诊断及治疗研究现状与进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 781-784.
[12] 孙铭远, 褚恒, 徐海滨, 张哲. 人工智能应用于多发性肺结节诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 785-790.
[13] 王子阳, 王宏宾, 刘晓旌. 血清标志物对甲胎蛋白阴性肝细胞癌诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 677-681.
[14] 陈慧, 邹祖鹏, 周田田, 张艺丹, 张海萍. 皮肤镜对头皮红斑性皮肤病辅助鉴别诊断的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 692-698.
[15] 胡云鹤, 周玉焯, 付瑞瑛, 于凡, 李爱东. CHS-DRG付费制度下GB1分组住院费用影响因素分析与管理策略探讨[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 568-574.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?