切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2025, Vol. 12 ›› Issue (01) : 39 -48. doi: 10.3877/cma.j.issn.2095-8773.2025.01.05

综述

人工智能在肺结节预测模型中应用的研究现状
马钰杰1, 游雨禾1, 朴哲1, 薛洪省1, 曹文军1, 王珍2, 赵志龙1,()   
  1. 1. 116601 大连,大连大学附属中山医院胸外科
    2. 116622 大连,大连大学机械工程学院
  • 收稿日期:2024-07-23 修回日期:2024-09-19 接受日期:2024-10-24 出版日期:2025-02-28
  • 通信作者: 赵志龙
  • 基金资助:
    大连大学学科交叉项目(DLUXK-2023-QN-012)

Current status of research on the application of artificial intelligence in lung nodule prediction modeling

Yujie Ma1, Yuhe You1, Zhe Piao1, Hongsheng Xue1, Wenjun Cao1, Zhen Wang2, Zhilong Zhao1,()   

  1. 1. Department of Thoracic Surgery,Affiliated Zhongshan Hospital of Dalian Uniνersity,Dalian 116601,China
    2. School of Mechanical Engineering,Uniνersity of Dalian,Dalian 116622,China
  • Received:2024-07-23 Revised:2024-09-19 Accepted:2024-10-24 Published:2025-02-28
  • Corresponding author: Zhilong Zhao
引用本文:

马钰杰, 游雨禾, 朴哲, 薛洪省, 曹文军, 王珍, 赵志龙. 人工智能在肺结节预测模型中应用的研究现状[J/OL]. 中华胸部外科电子杂志, 2025, 12(01): 39-48.

Yujie Ma, Yuhe You, Zhe Piao, Hongsheng Xue, Wenjun Cao, Zhen Wang, Zhilong Zhao. Current status of research on the application of artificial intelligence in lung nodule prediction modeling[J/OL]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2025, 12(01): 39-48.

肺结节是一种常见的胸部影像学表现,受到临床及社会的广泛关注。近年来,基于计算机断层扫描(CT)图像的人工智能(AI)技术趋于成熟,在肺结节检出分类、病理分型、恶性程度及基因突变预测等方面应用广泛。本文旨在梳理和分析AI在肺结节诊疗领域的相关研究。

Lung nodules are a common chest imaging manifestation,which has received extensive attention from the clinic and society.In recent years, artificial intelligence (AI) technology based on computed tomography (CT) images has matured and has been widely applied in the classification of lung nodule detection,pathologic typing,malignancy degree and gene mutation prediction.The aim of this paper is to sort out and analyze the relevant studies of AI in the field of lung nodule diagnosis and treatment.

表1 人工智能在肺癌恶性程度预测模型中表现的比较
1
Bankier AA,MacMahon H,Colby T,et al.Fleischner Society:Glossary of Terms for Thoracic Imaging[J].Radiology,2024,310(2):e232558.
2
Siegel RL,Miller KD,Wagle NS,et al.Cancer statistics,2023[J].CA Cancer J Clin,2023,73(1):17-48.
3
Jonas DE,Reuland DS,Reddy SM,et al.Screening for Lung Cancer With Low-Dose Computed Tomography:Updated Evidence Report and Systematic Review for the US Preventive Services Task Force[J].JAMA,2021,325(10):971-987.
4
Dong S,Wang P,Abbas K.A survey on deep learning and its applications[J].Comput Sci Rev,2021,40:100379.
5
Tunali I,Gillies RJ,Schabath MB.Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine[J].Cold Spring Harb Perspect Med,2021,11(8):a039537.
6
de Margerie-Mellon C,Chassagnon G.Artificial intelligence:A critical review of applications for lung nodule and lung cancer[J].Diagn Interv Imaging,2023,104(1):11-17.
7
明佳蕾,方向明.基于人工智能的CT 肺结节检出临床应用及研究进展[J].中华放射学杂志,2019,53(6):522-525.
8
Ledley RS.Use of computers in biomedical pattern recognition[J].Adv Comput,1970,10:217-252.
9
Suzuki K,Shiraishi J,Abe H,et al.False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network[J].Acad Radiol,2005,12(2):191-201.
10
蒋希,袁奕萱,王雅萍,等.中国医学影像人工智能20 年回顾和展望[J].中国图象图形学报,2022,27(3):655-671.
11
Suzuki K.Overview of deep learning in medical imaging[J].Radiol Phys Technol,2017,10(3):257-273.
12
Russakovsky O,Deng J,Su H,et al.ImageNet Large Scale Visual Recognition Challenge[J].International Journal of Computer Vision,2015,115(3):211-252.
13
Huang G,Wei X,Tang H,et al.A systematic review and metaanalysis of diagnostic performance and physicians perceptions of artificial intelligence(AI)-assisted CT diagnostic technology for the classification of pulmonary nodules[J].J Thorac Dis,2021,13(8):4797-4811.
14
Lan CC,Hsieh MS,Hsiao JK,et al.Deep learning-based artificial intelligence improves accuracy of error-prone lung nodules[J].Int J Med Sci,2022,19(3):490-498.
15
Cao H,Liu H,Song E,et al.A Two-Stage Convolutional Neural Networks for Lung Nodule Detection[J].IEEE J Biomed Health Inform,2020,24(7):2006-2015.
16
Cui S,Ming S,Lin Y,et al.Development and clinical application of deep learning model for lung nodules screening on CT images[J].Sci Rep,2020,10(1):13657.
17
Chauvie S,De Maggi A,Baralis I,et al.Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial[J].Eur Radiol,2020,30(7):4134-4140.
18
Hendrix W,Hendrix N,Scholten ET,et al.Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans[J].Commun Med(Lond),2023,3(1):156.
19
Wang H,Zhu H,Ding L,et al.A diagnostic classification of lung nodules using multiple-scale residual network[J].Sci Rep,2023,13(1):11322.
20
Zhao T,Qi S,Yue Y,et al.CLSSL-ResNet:Predicting malignancy of solitary pulmonary nodules from CT images by chimeric label with self-supervised learning[J].J Xray Sci Technol,2023,31(5):981-999.
21
Chae KJ,Jin GY,Ko SB,et al.Deep Learning for the Classification of Small(≤2 cm)Pulmonary Nodules on CT Imaging:A Preliminary Study[J].Acad Radiol,2020,27(4):e55-e63.
22
王峥,张洪,吕军,等.人工智能辅助诊疗系统在肺小结节诊断中的应用——附1650 例临床分析[J].中华胸心血管外科杂志,2023,39(8):466-471.
23
Huang YS,Wang TC,Huang SZ,et al.An improved 3-D attention CNN with hybrid loss and feature fusion for pulmonary nodule classification[J].Comput Methods Programs Biomed,2023,229:107278.
24
Li K,Liu K,Zhong Y,et al.Assessing the predictive accuracy of lung cancer,metastases,and benign lesions using an artificial intelligence-driven computer aided diagnosis system[J].Quant Imaging Med Surg,2021,11(8):3629-3642.
25
Herbst RS,Morgensztern D,Boshoff C.The biology and management of non-small cell lung cancer[J].Nature,2018,553(7689):446-454.
26
Chen K,Wang M,Song Z.Multi-task learning-based histologic subtype classification of non-small cell lung cancer[J].Radiol Med,2023,128(5):537-543.
27
Dunn B,Pierobon M,Wei Q.Automated Classification of Lung Cancer Subtypes Using Deep Learning and CT-Scan Based Radiomic Analysis[J].Bioengineering (Basel),2023,10(6):690.
28
Yeh YC,Nitadori J,Kadota K,et al.Using frozen section to identify histological patterns in stage I lung adenocarcinoma of ≤3 cm:accuracy and interobserver agreement[J].Histopathology,2015,66(7):922-938.
29
Tsao MS,Nicholson AG,Maleszewski JJ,et al.Introduction to 2021 WHO Classification of Thoracic Tumors[J].J Thorac Oncol,2022,17(1):e1-e4.
30
Zhang Y,Ma X,Shen X,et al.Surgery for pre- and minimally invasive lung adenocarcinoma[J].J Thorac Cardiovasc Surg,2022,163(2):456-464.
31
Saji H,Okada M,Tsuboi M,et al.Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer(JCOG0802/WJOG4607L):a multicentre,open-label,phase 3,randomised,controlled,non-inferiority trial[J].Lancet,2022,399(10335):1607-1617.
32
Wang J,Chen X,Lu H,et al.Feature-shared adaptive-boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images[J].Med Phys,2020,47(4):1738-1749.
33
Qi K,Wang K,Wang X,et al.Lung-PNet:An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT[J].AJR Am J Roentgenol,2024,222(1):e2329674.
34
Wang C,Shao J,Lv J,et al.Deep learning for predicting subtype classification and survival of lung adenocarcinoma on computed tomography[J].Transl Oncol,2021,14(8):101141.
35
Wang J,Yuan C,Han C,et al.IMAL-Net:Interpretable multitask attention learning network for invasive lung adenocarcinoma screening in CT images[J].Med Phys,2021,48(12):7913-7929.
36
Lin CY,Guo SM,Lien JJ,et al.Combined model integrating deep learning,radiomics,and clinical data to classify lung nodules at chest CT[J].Radiol Med,2024,129(1):56-69.
37
Ashraf SF,Yin K,Meng CX,et al.Predicting benign,preinvasive,and invasive lung nodules on computed tomography scans using machine learning[J].J Thorac Cardiovasc Surg,2022,163(4):1496-1505.e10.
38
潘政松,宋兰,宋伟,等.深度学习用于影像学预测肺腺癌浸润性的研究进展[J].中华放射学杂志,2023,57(9):1018-1022.
39
Pan Z,Hu G,Zhu Z,et al.Predicting Invasiveness of Lung Adenocarcinoma at Chest CT with Deep Learning Ternary Classification Models[J].Radiology,2024,311(1):e232057.
40
Moreira AL,Ocampo PSS,Xia Y,et al.A Grading System for Invasive Pulmonary Adenocarcinoma:A Proposal From the International Association for the Study of Lung Cancer Pathology Committee[J].J Thorac Oncol,2020,15(10):1599-1610.
41
Kadota K,Nitadori JI,Sima CS,et al.Tumor Spread through Air Spaces is an Important Pattern of Invasion and Impacts the Frequency and Location of Recurrences after Limited Resection for Small Stage I Lung Adenocarcinomas[J].J Thorac Oncol,2015,10(5):806-814.
42
Chae M,Jeon JH,Chung JH,et al.Prognostic significance of tumor spread through air spaces in patients with stage IA partsolid lung adenocarcinoma after sublobar resection[J].Lung Cancer,2021,152:21-26.
43
Travis WD,Eisele M,Nishimura KK,et al.The International Association for the Study of Lung Cancer (IASLC) Staging Project for Lung Cancer:Recommendation to Introduce Spread Through Air Spaces as a Histologic Descriptor in the Ninth Edition of the TNM Classification of Lung Cancer.Analysis of 4061 Pathologic Stage I NSCLC[J].J Thorac Oncol,2024,19(7):1028-1051.
44
Liu Q,Qi W,Wu Y,et al.Construction of Pulmonary Nodule CT Radiomics Random Forest Model Based on Artificial Intelligence Software for STAS Evaluation of Stage IA Lung Adenocarcinoma[J].Comput Math Methods Med,2022,2022:2173412.
45
Lin MW,Chen LW,Yang SM,et al.CT-Based deep-learning model for spread-through-air-spaces prediction in ground glasspredominant lung adenocarcinoma[J].Ann Surg Oncol,2024,31(3):1536-1545.
46
Qi L,Li X,He L,et al.Comparison of Diagnostic Performance of Spread Through Airspaces of Lung Adenocarcinoma Based on Morphological Analysis and Perinodular and Intranodular Radiomic Features on Chest CT Images[J].Front Oncol,2021,11:654413.
47
Jin W,Shen L,Tian Y,et al.Improving the prediction of Spreading Through Air Spaces (STAS) in primary lung cancer with a dynamic dual-delta hybrid machine learning model:a multicenter cohort study[J].Biomark Res,2023,11(1):102.
48
Wang C,Wu Y,Shao J,et al.Clinicopathological variables influencing overall survival,recurrence and post-recurrence survival in resected stage I non-small-cell lung cancer[J].BMC Cancer,2020,20(1):150.
49
Schuchert MJ,Normolle DP,Awais O,et al.Factors influencing recurrence following anatomic lung resection for clinical stage I non-small cell lung cancer[J].Lung Cancer,2019,128:145-151.
50
Beck KS,Gil B,Na SJ,et al.DeepCUBIT:Predicting Lymphovascular Invasion or Pathological Lymph Node Involvement of Clinical T1 Stage Non-Small Cell Lung Cancer on Chest CT Scan Using Deep Cubical Nodule Transfer Learning Algorithm[J].Front Oncol,2021,11:661244.
51
Liu K,Lin X,Chen X,et al.Development and validation of a deep learning signature for predicting lymphovascular invasion and survival outcomes in clinical stage IA lung adenocarcinoma:A multicenter retrospective cohort study[J].Transl Oncol,2024,42:101894.
52
Chen Q,Shao J,Xue T,et al.Intratumoral and peritumoral radiomics nomograms for the preoperative prediction of lymphovascular invasion and overall survival in non-small cell lung cancer[J].Eur Radiol,2023,33(2):947-958.
53
Goldstraw P,Chansky K,Crowley J,et al.The IASLC Lung Cancer Staging Project:Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer[J].J Thorac Oncol,2016,11(1):39-51.
54
Mathey-Andrews C,Abruzzo AR,Venkateswaran S,et al.Segmentectomy vs Lobectomy for Early Non-Small Cell Lung Cancer With Visceral Pleural Invasion[J].Ann Thorac Surg,2024,117(5):1007-1014.
55
Sun Q,Li P,Zhang J,et al.CT Predictors of Visceral Pleural Invasion in Patients with Non-Small Cell Lung Cancers 30 mm or Smaller[J].Radiology,2024,310(1):e231611.
56
Kim H,Goo JM,Kim YT,et al.CT-defined Visceral Pleural Invasion in T1 Lung Adenocarcinoma:Lack of Relationship to Disease-Free Survival[J].Radiology,2019,292(3):741-749.
57
Choi H,Kim H,Hong W,et al.Prediction of visceral pleural invasion in lung cancer on CT:deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs[J].Eur Radiol,2021,31(5):2866-2876.
58
Lin X,Liu K,Li K,et al.A CT-based deep learning model:visceral pleural invasion and survival prediction in clinical stage IA lung adenocarcinoma[J].iScience,2024,27(1):108712.
59
Wang Y,Lyu D,Hu S,et al.Nomogram using intratumoral and peritumoral radiomics for the preoperative prediction of visceral pleural invasion in clinical stage IA lung adenocarcinoma[J].J Cardiothorac Surg,2024,19(1):307.
60
Tian W,Yan Q,Huang X,et al.Predicting occult lymph node metastasis in solid-predominantly invasive lung adenocarcinoma across multiple centers using radiomics-deep learning fusion model[J].Cancer Imaging,2024,24(1):8.
61
Wang C,Wu Y,Shao J,et al.Clinicopathological variables influencing overall survival,recurrence and post-recurrence survival in resected stage I non-small-cell lung cancer[J].BMC Cancer,2020,20(1):150.
62
Zhao X,Wang X,Xia W,et al.A cross-modal 3D deep learning for accurate lymph node metastasis prediction in clinical stage T1 lung adenocarcinoma[J].Lung Cancer,2020,145:10-17.
63
Zhang H,Liao M,Guo Q,et al.Predicting N2 lymph node metastasis in presurgical stage I-II non-small cell lung cancer using multiview radiomics and deep learning method[J].Med Phys,2023,50(4):2049-2060.
64
Ma X,Xia L,Chen J,et al.Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma:comparison with radiomics signature and clinical-semantic model[J].Eur Radiol,2023,33(3):1949-1962.
65
Le NQK,Kha QH,Nguyen VH,et al.Machine Learning-Based Radiomics Signatures for EGFR and KRAS Mutations Prediction in Non-Small-Cell Lung Cancer[J].Int J Mol Sci,2021,22(17):9254.
66
Kim S,Lim JH,Kim CH,et al.Deep learning-radiomics integrated noninvasive detection of epidermal growth factor receptor mutations in non-small cell lung cancer patients[J].Sci Rep,2024,14(1):922.
67
Wang S,Yu H,Gan Y,et al.Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer:a multicohort study[J].Lancet Digit Health,2022,4(5):e309-e319.
68
Quanyang W,Yao H,Sicong W,et al.Artificial intelligence in lung cancer screening:Detection,classification,prediction,and prognosis[J].Cancer Med,2024,13(7):e7140.
69
Huang S,Yang J,Shen N,et al.Artificial intelligence in lung cancer diagnosis and prognosis:Current application and future perspective[J].Semin Cancer Biol,2023,89:30-37.
70
Zhang C,Xu J,Tang R,et al.Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment[J].J Hematol Oncol,2023,16(1):114.
[1] 王昕玥, 袁亚, 束华, 曹琨芃, 叶新华, 李璐. 基于LightGBM 算法构建超声引导下凝血酶治疗假性动脉瘤剂量预测模型[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 153-161.
[2] 袁强, 张华宇, 闫璋哲, 朱含放, 陈光, 孙亮, 吕远, 陈纲, 赵锁. cN0峡部偏侧甲状腺乳头状癌中央区淋巴结转移的术前预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 333-336.
[3] 朱宗恒, 张志火. 甲状腺乳头状癌对侧中央区淋巴结转移的危险因素分析及预测模型构建[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 337-340.
[4] 奚玲, 仝瀚文, 缪骥, 毛永欢, 沈晓菲, 杜峻峰, 刘晔. 基于肌少症构建的造口旁疝危险因素预测模型[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 48-51.
[5] 陈洁莹, 许晶莹, 黄泽萍. 超声在女性压力性尿失禁诊断与疗效评估中的应用进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 14-20.
[6] 应允丽, 赵凤德, 韩明锋, 李明, 申辉. 肺腺癌患者衰弱状态与预后关系分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 131-134.
[7] 夏永旭, 林元强, 王辉. 多模态超声引导消融治疗周围型肺癌研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 176-179.
[8] 张铭杰, 李梦娜, 程明瑶, 王宇亮, 粘永健, 赵瑞臣, 杨宇, 刘慕源, 廖元, 唐超. 高原肺水肿肺超声筛查深度学习模型构建与优化[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(01): 68-73.
[9] 李鑫, 李乐, 陈金明, 刘蕊. 基于Meta 分析构建肝癌微血管侵犯的术前预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 74-80.
[10] 彭子洋, 王志博, 巴赫, 颜彦, 彭浩茜, 李宇, 刘学民, 向俊西, 吴荣谦, 吕毅. 增强现实、虚拟现实与混合现实在腔镜肝脏外科中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(01): 13-17.
[11] 任船, 葛荣忠, 邱正才, 朱莉. 肠癌患者术后代谢性酸中毒的预测模型构建及应用价值评价[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(01): 34-39.
[12] 范文文, 范晓娟, 白桦, 张红梅, 王洁. 医学成像和放射治疗中的AI 治理审查框架[J/OL]. 中华临床医师杂志(电子版), 2024, 18(11): 973-979.
[13] 梁博宇, 宋宏萍, 宋张骏, 巨艳, 王虎霞, 薛文欣. 人工智能辅助乳腺影像学检查造成的自动偏差[J/OL]. 中华临床医师杂志(电子版), 2024, 18(11): 1061-1065.
[14] 洪凡, 王志坚. 瘢痕子宫再妊娠并发症预测模型的研究进展[J/OL]. 中华产科急救电子杂志, 2025, 14(01): 20-25.
[15] 崔世军, 黄志宁, 王高祥, 吴明胜, 孙效辉, 徐美清, 解明然. 不同手术方式对≤2 cm外周型肺腺癌患者肺部术后慢性咳嗽对比分析[J/OL]. 中华胸部外科电子杂志, 2025, 12(01): 24-32.
阅读次数
全文


摘要