1 |
Bray F,Laversanne M,Sung H,et al.Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2024,74(3):229-263.
|
2 |
郑荣寿,陈茹,韩冰峰,等.2022年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志,2024,46(3):221-231.
|
3 |
Siegel RL,Giaquinto AN,Jemal A.Cancer statistics,2024[J].CA Cancer J Clin,2024,74(1):12-49.
|
4 |
Tang H,Wang H,Fang Y,et al.Neoadjuvant chemoradiotherapy versus neoadjuvant chemotherapy followed by minimally invasive esophagectomy for locally advanced esophageal squamous cell carcinoma:a prospective multicenter randomized clinical trial[J].Ann Oncol,2023,34(2):163-172.
|
5 |
Klevebro F,Alexandersson von Döbeln G,Wang N,et al.A randomized clinical trial of neoadjuvant chemotherapy versus neoadjuvant chemoradiotherapy for cancer of the oesophagus or gastro-oesophageal junction[J].Ann Oncol,2016,27(4):660-667.
|
6 |
Deo RC.Machine Learning in Medicine[J].Circulation,2015,132(20):1920-1930.
|
7 |
Misra I,Maaten LVD.Self-Supervised Learning of Pretext-Invariant Representations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA:IEEE,2019:6706-6716.
|
8 |
Chauhan NK,Singh K.A Review on Conventional Machine Learning vs Deep Learning[C]//2018 International Conference on Computing, Power and Communication Technologies(GUCON).Greater Noida:IEEE;2018.
|
9 |
Klionsky DJ,Abdelmohsen K,Abe A,et al.Guidelines for the use and interpretation of assays for monitoring autophagy(3rd edition)[J].Autophagy,2016,12(1):1-222.
|
10 |
Nohara Y,Matsumoto K,Soejima H,et al.Explanation of machine learning models using shapley additive explanation and application for real data in hospital[J].Comput Methods Programs Biomed,2022,214:106584.
|
11 |
Okamura A,Watanabe M,Okui J,et al.Neoadjuvant Chemotherapy or Neoadjuvant Chemoradiotherapy for Patients with Esophageal Squamous Cell Carcinoma:Real-World Data Comparison from A Japanese Nationwide Study[J].Ann Surg Oncol,2023,30(9):5885-5894.
|
12 |
Reynolds JV,Preston SR,O’Neill B,et al.Trimodality therapy versus perioperative chemotherapy in the management of locally advanced adenocarcinoma of the oesophagus and oesophagogastric junction(Neo-AEGIS):an open-label,randomised,phase 3 trial[J].Lancet Gastroenterol Hepatol,2023,8(11):1015-1027.
|
13 |
Kato K,Machida R,Ito Y,et al.Doublet chemotherapy,triplet chemotherapy,or doublet chemotherapy combined with radiotherapy as neoadjuvant treatment for locally advanced oesophageal cancer(JCOG1109 NExT):a randomised,controlled,open-label,phase 3 trial[J].Lancet,2024,404(10447):55-66.
|
14 |
Wu YY,Dai L,Yang YB,et al.Long-Term Survival and Recurrence Patterns in Locally Advanced Esophageal Squamous Cell Carcinoma Patients with Pathologic Complete Response After Neoadjuvant Chemotherapy Followed by Surgery[J].Ann Surg Oncol,2024,31(8):5047-5054.
|
15 |
Ou J,Zhou HY,Qin HL,et al.Baseline CT radiomics features to predict pathological complete response of advanced esophageal squamous cell carcinoma treated with neoadjuvant chemotherapy using paclitaxel and cisplatin[J].Eur J Radiol,2024,181:111763.
|
16 |
Liu Y,Wang Y,Wang X,et al.MR radiomics predicts pathological complete response of esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy:a multicenter study[J].Cancer Imaging,2024,24(1):16.
|
17 |
Fan L,Yang Z,Chang M,et al.CT-based delta-radiomics nomogram to predict pathological complete response after neoadjuvant chemoradiotherapy in esophageal squamous cell carcinoma patients[J].J Transl Med,2024,22(1):579.
|
18 |
Lu S,Wang C,Liu Y,et al.The MRI radiomics signature can predict the pathologic response to neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma[J].Eur Radiol,2024,34(1):485-494.
|
19 |
Wang J,Zhu X,Zeng J,et al.Using clinical and radiomic feature-based machine learning models to predict pathological complete response in patients with esophageal squamous cell carcinoma receiving neoadjuvant chemoradiation[J].Eur Radiol,2023,33(12):8554-8563.
|
20 |
Li Z,Wang F,Zhang H,et al.A radiomics strategy based on CT intra-tumoral and peritumoral regions for preoperative prediction of neoadjuvant chemoradiotherapy for esophageal cancer[J].Eur J Surg Oncol,2024,50(4):108052.
|
21 |
Noordman BJ,Verdam MGE,Lagarde SM,et al.Effect of Neoadjuvant Chemoradiotherapy on Health-Related Quality of Life in Esophageal or Junctional Cancer:Results From the Randomized CROSS Trial[J].J Clin Oncol,2018,36(3):268-275.
|
22 |
Buck A,Prade VM,Kunzke T,et al.Metabolic tumor constitution is superior to tumor regression grading for evaluating response to neoadjuvant therapy of esophageal adenocarcinoma patients[J].J Pathol,2022,256(2):202-213.
|
23 |
Xie Y,Liu Q,Ji C,et al.An artificial neural network-based radiomics model for predicting the radiotherapy response of advanced esophageal squamous cell carcinoma patients:a multicenter study[J].Sci Rep,2023,13(1):8673.
|
24 |
Li X,Gao H,Zhu J,et al.3D Deep Learning Model for the Pretreatment Evaluation of Treatment Response in Esophageal Carcinoma:A Prospective Study (ChiCTR2000039279)[J].Int J Radiat Oncol Biol Phys,2021,111(4):926-935.
|
25 |
Jin X,Zheng X,Chen D,et al.Prediction of response after chemoradiation for esophageal cancer using a combination of dosimetry and CT radiomics[J].Eur Radiol,2019,29(11):6080-6088.
|
26 |
Tolkach Y,Wolgast LM,Damanakis A,et al.Artificial intelligence for tumour tissue detection and histological regression grading in oesophageal adenocarcinomas:a retrospective algorithm development and validation study[J].Lancet Digit Health,2023,5(5):e265-e275.
|
27 |
Kotter E,Pinto Dos Santos D.Ethics and artificial intelligence[J].Radiologie(Heidelb),2024,64(6):498-502.
|
28 |
Morgan E,Soerjomataram I,Rumgay H,et al.The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040:New Estimates From GLOBOCAN 2020[J].Gastroenterology,2022,163(3):649-658.e2.
|
29 |
Cui Y,Li Z,Xiang M,et al.Machine learning models predict overall survival and progression free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image radiomics signatures[J].Radiat Oncol,2022,17(1):212.
|
30 |
Xiong J,Yu W,Ma J,et al.The Role of PET-Based Radiomic Features in Predicting Local Control of Esophageal Cancer Treated with Concurrent Chemoradiotherapy[J].Sci Rep,2018,8(1):9902.
|
31 |
Gong J,Lu J,Zhang W,et al.A CT-based subregional radiomics nomogram for predicting local recurrence-free survival in esophageal squamous cell cancer patients treated by definitive chemoradiotherapy:a multicenter study[J].J Transl Med,2024,22(1):1108.
|
32 |
Kawahara D,Nishioka R,Murakami Y,et al.A nomogram based on pretreatment radiomics and dosiomics features for predicting overall survival associated with esophageal squamous cell cancer[J].Eur J Surg Oncol,2024,50(7):108450.
|
33 |
Kouzu K,Tsujimoto H,Imamura Y,et al.Development and Validation Study of the Prognostic Impact of Deep Learning-Determined Myxoid Stroma After Neoadjuvant Chemotherapy in Patients with Esophageal Squamous Cell Carcinoma[J].Ann Surg Oncol,2024,31(9):6300-6308.
|
34 |
Draguet C,Barragán-Montero AM,Vera MC,et al.Automated clinical decision support system with deep learning dose prediction and NTCP models to evaluate treatment complications in patients with esophageal cancer[J].Radiother Oncol,2022,176:101-107.
|
35 |
Chu Y,Zhu C,Hobbs BP,et al.Personalized Composite Dosimetric Score-Based Machine Learning Model of Severe Radiation-Induced Lymphopenia Among Patients With Esophageal Cancer[J].Int J Radiat Oncol Biol Phys,2024,120(4):1172-1180.
|
36 |
Li C,Zhang J,Ning B,et al.Radiation pneumonitis prediction with dual-radiomics for esophageal cancer underwent radiotherapy[J].Radiat Oncol,2024,19(1):72.
|
37 |
Skrede OJ,De Raedt S,Kleppe A,et al.Deep learning for prediction of colorectal cancer outcome:a discovery and validation study[J].Lancet,2020,395(10221):350-360.
|
38 |
Wang R,Dai W,Gong J,et al.Development of a novel combined nomogram model integrating deep learningpathomics,radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients[J].J Hematol Oncol,2022,15(1):11.
|
39 |
Sun JM,Shen L,Shah MA,et al.Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590):a randomised,placebo-controlled,phase 3 study[J].Lancet,2021,398(10302):759-771.
|
40 |
Janjigian YY,Shitara K,Moehler M,et al.First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric,gastro-oesophageal junction,and oesophageal adenocarcinoma (CheckMate 649):a randomised,open-label,phase 3 trial[J].Lancet,2021,398(10294):27-40.
|
41 |
Shen L,Kato K,Kim SB,et al.Tislelizumab Versus Chemotherapy as Second-Line Treatment for Advanced or Metastatic Esophageal Squamous Cell Carcinoma (RATIONALE-302):A Randomized Phase III Study[J].J Clin Oncol,2022,40(26):3065-3076.
|
42 |
Li C,Zhao S,Zheng Y,et al.Preoperative pembrolizumab combined with chemoradiotherapy for oesophageal squamous cell carcinoma (PALACE-1)[J].Eur J Cancer,2021,144:232-241.
|
43 |
Wang JL,Tang LS,Zhong X,et al.A machine learning radiomics based on enhanced computed tomography to predict neoadjuvant immunotherapy for resectable esophageal squamous cell carcinoma[J].Front Immunol,2024,15:1405146.
|
44 |
Zhu Y,Yao W,Xu BC,et al.Predicting response to immunotherapy plus chemotherapy in patients with esophageal squamous cell carcinoma using non-invasive Radiomic biomarkers[J].BMC Cancer,2021,21(1):1167.
|
45 |
Shi L,Li C,Bai Y,et al.CT radiomics to predict pathologic complete response after neoadjuvant immunotherapy plus chemoradiotherapy in locally advanced esophageal squamous cell carcinoma[J].Eur Radiol,2025,35(3):1594-1604.
|
46 |
Qi WX,Li S,Xiao J,et al.A machine learning approach using (18)F-FDG PET and enhanced CT scan-based radiomics combined with clinical model to predict pathological complete response in ESCC patients after neoadjuvant chemoradiotherapy and anti-PD-1 inhibitors[J].Front Immunol,2024,15:1351750.
|
47 |
Lin F,Zhu LX,Ye ZM,et al.Computed Tomography-Based Intratumor Heterogeneity Predicts Response to Immunotherapy Plus Chemotherapy in Esophageal Squamous Cell Carcinoma[J].Acad Radiol,2024,31(12):4886-4899.
|
48 |
Li B,Qin W,Yang L,et al.From pixels to patient care:deep learning-enabled pathomics signature offers precise outcome predictions for immunotherapy in esophageal squamous cell cancer[J].J Transl Med,2024,22(1):195.
|
49 |
Yang Y,Yi Y,Wang Z,et al.A combined nomogram based on radiomics and hematology to predict the pathological complete response of neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma[J].BMC Cancer,2024,24(1):460.
|
50 |
Qi Y,Hu Y,Lin C,et al.A preoperative predictive model based on multi-modal features to predict pathological complete response after neoadjuvant chemoimmunotherapy in esophageal cancer patients[J].Front Immunol,2025,16:1530279.
|
51 |
Fick CN,Dunne EG,Sihag S,et al.Immunotherapy for Resectable Locally Advanced Esophageal Carcinoma[J].Ann Thorac Surg,2024,118(1):130-140.
|
52 |
Goetz L,Seedat N,Vandersluis R,et al.Generalization-a key challenge for responsible AI in patient-facing clinical applications[J].NPJ Digit Med,2024,7(1):126.
|