切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2025, Vol. 12 ›› Issue (02) : 96 -104. doi: 10.3877/cma.j.issn.2095-8773.2025.02.04

所属专题: 文献

综述

人工智能驱动食管癌新辅助精准治疗
许一鸣1, 范雪源1, 李世浩2, 徐一帆1, 李博文1, 耿振洋1, 刘亚飞1, 叶贯超1, 李峰1, 黄岚2, 齐宇1,()   
  1. 1. 450052 郑州,郑州大学第一附属医院胸外一科
    2. 450052 郑州,郑州大学第一附属医院医学转化中心
  • 收稿日期:2025-03-24 修回日期:2025-04-14 接受日期:2025-04-25 出版日期:2025-05-28
  • 通信作者: 齐宇

Artificial intelligence-driven neoadjuvant precision treatment of esophageal cancer

Yiming Xu1, Xueyuan Fan1, Shihao Li2, Yifan Xu1, Bowen Li1, Zhenyang Geng1, Yafei Liu1, Guanchao Ye1, Feng Li1, Lan Huang2, Yu Qi1,()   

  1. 1. First Department of Thoracic Surgery,The First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China
    2. Medical Transformation Center,The First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China
  • Received:2025-03-24 Revised:2025-04-14 Accepted:2025-04-25 Published:2025-05-28
  • Corresponding author: Yu Qi
引用本文:

许一鸣, 范雪源, 李世浩, 徐一帆, 李博文, 耿振洋, 刘亚飞, 叶贯超, 李峰, 黄岚, 齐宇. 人工智能驱动食管癌新辅助精准治疗[J/OL]. 中华胸部外科电子杂志, 2025, 12(02): 96-104.

Yiming Xu, Xueyuan Fan, Shihao Li, Yifan Xu, Bowen Li, Zhenyang Geng, Yafei Liu, Guanchao Ye, Feng Li, Lan Huang, Yu Qi. Artificial intelligence-driven neoadjuvant precision treatment of esophageal cancer[J/OL]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2025, 12(02): 96-104.

食管癌作为侵袭性强、预后差的消化道恶性肿瘤,其治疗策略需个体化与精准化。近年来,人工智能(AI)技术的快速发展为食管癌治疗的各个环节注入了新动能,显著提升了疗效预测、方案制订和动态干预的精准度。本文系统综述AI在食管癌治疗中的核心应用场景与最新进展,并探讨其临床转化面临的挑战与未来方向。

Esophageal cancer is a highly aggressive digestive tract malignancy with a poor prognosis.Its treatment strategies require individualization and precision.Recent advances in artificial intelligence (AI) have enhanced various aspects of esophageal cancer treatment, significantly improving the accuracy of treatment outcome prediction,treatment plan formulation,and dynamic intervention.This article systematically reviews the core applications and recent progress of AI in the treatment of esophageal cancer,and discusses the challenges and future directions for its clinical application.

表1 人工智能预测新辅助放化疗病理完全缓解
表2 人工智能在食管癌免疫治疗临床决策的应用
1
Bray F,Laversanne M,Sung H,et al.Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2024,74(3):229-263.
2
郑荣寿,陈茹,韩冰峰,等.2022年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志,2024,46(3):221-231.
3
Siegel RL,Giaquinto AN,Jemal A.Cancer statistics,2024[J].CA Cancer J Clin,2024,74(1):12-49.
4
Tang H,Wang H,Fang Y,et al.Neoadjuvant chemoradiotherapy versus neoadjuvant chemotherapy followed by minimally invasive esophagectomy for locally advanced esophageal squamous cell carcinoma:a prospective multicenter randomized clinical trial[J].Ann Oncol,2023,34(2):163-172.
5
Klevebro F,Alexandersson von Döbeln G,Wang N,et al.A randomized clinical trial of neoadjuvant chemotherapy versus neoadjuvant chemoradiotherapy for cancer of the oesophagus or gastro-oesophageal junction[J].Ann Oncol,2016,27(4):660-667.
6
Deo RC.Machine Learning in Medicine[J].Circulation,2015,132(20):1920-1930.
7
Misra I,Maaten LVD.Self-Supervised Learning of Pretext-Invariant Representations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA:IEEE,2019:6706-6716.
8
Chauhan NK,Singh K.A Review on Conventional Machine Learning vs Deep Learning[C]//2018 International Conference on Computing, Power and Communication Technologies(GUCON).Greater Noida:IEEE;2018.
9
Klionsky DJ,Abdelmohsen K,Abe A,et al.Guidelines for the use and interpretation of assays for monitoring autophagy(3rd edition)[J].Autophagy,2016,12(1):1-222.
10
Nohara Y,Matsumoto K,Soejima H,et al.Explanation of machine learning models using shapley additive explanation and application for real data in hospital[J].Comput Methods Programs Biomed,2022,214:106584.
11
Okamura A,Watanabe M,Okui J,et al.Neoadjuvant Chemotherapy or Neoadjuvant Chemoradiotherapy for Patients with Esophageal Squamous Cell Carcinoma:Real-World Data Comparison from A Japanese Nationwide Study[J].Ann Surg Oncol,2023,30(9):5885-5894.
12
Reynolds JV,Preston SR,O’Neill B,et al.Trimodality therapy versus perioperative chemotherapy in the management of locally advanced adenocarcinoma of the oesophagus and oesophagogastric junction(Neo-AEGIS):an open-label,randomised,phase 3 trial[J].Lancet Gastroenterol Hepatol,2023,8(11):1015-1027.
13
Kato K,Machida R,Ito Y,et al.Doublet chemotherapy,triplet chemotherapy,or doublet chemotherapy combined with radiotherapy as neoadjuvant treatment for locally advanced oesophageal cancer(JCOG1109 NExT):a randomised,controlled,open-label,phase 3 trial[J].Lancet,2024,404(10447):55-66.
14
Wu YY,Dai L,Yang YB,et al.Long-Term Survival and Recurrence Patterns in Locally Advanced Esophageal Squamous Cell Carcinoma Patients with Pathologic Complete Response After Neoadjuvant Chemotherapy Followed by Surgery[J].Ann Surg Oncol,2024,31(8):5047-5054.
15
Ou J,Zhou HY,Qin HL,et al.Baseline CT radiomics features to predict pathological complete response of advanced esophageal squamous cell carcinoma treated with neoadjuvant chemotherapy using paclitaxel and cisplatin[J].Eur J Radiol,2024,181:111763.
16
Liu Y,Wang Y,Wang X,et al.MR radiomics predicts pathological complete response of esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy:a multicenter study[J].Cancer Imaging,2024,24(1):16.
17
Fan L,Yang Z,Chang M,et al.CT-based delta-radiomics nomogram to predict pathological complete response after neoadjuvant chemoradiotherapy in esophageal squamous cell carcinoma patients[J].J Transl Med,2024,22(1):579.
18
Lu S,Wang C,Liu Y,et al.The MRI radiomics signature can predict the pathologic response to neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma[J].Eur Radiol,2024,34(1):485-494.
19
Wang J,Zhu X,Zeng J,et al.Using clinical and radiomic feature-based machine learning models to predict pathological complete response in patients with esophageal squamous cell carcinoma receiving neoadjuvant chemoradiation[J].Eur Radiol,2023,33(12):8554-8563.
20
Li Z,Wang F,Zhang H,et al.A radiomics strategy based on CT intra-tumoral and peritumoral regions for preoperative prediction of neoadjuvant chemoradiotherapy for esophageal cancer[J].Eur J Surg Oncol,2024,50(4):108052.
21
Noordman BJ,Verdam MGE,Lagarde SM,et al.Effect of Neoadjuvant Chemoradiotherapy on Health-Related Quality of Life in Esophageal or Junctional Cancer:Results From the Randomized CROSS Trial[J].J Clin Oncol,2018,36(3):268-275.
22
Buck A,Prade VM,Kunzke T,et al.Metabolic tumor constitution is superior to tumor regression grading for evaluating response to neoadjuvant therapy of esophageal adenocarcinoma patients[J].J Pathol,2022,256(2):202-213.
23
Xie Y,Liu Q,Ji C,et al.An artificial neural network-based radiomics model for predicting the radiotherapy response of advanced esophageal squamous cell carcinoma patients:a multicenter study[J].Sci Rep,2023,13(1):8673.
24
Li X,Gao H,Zhu J,et al.3D Deep Learning Model for the Pretreatment Evaluation of Treatment Response in Esophageal Carcinoma:A Prospective Study (ChiCTR2000039279)[J].Int J Radiat Oncol Biol Phys,2021,111(4):926-935.
25
Jin X,Zheng X,Chen D,et al.Prediction of response after chemoradiation for esophageal cancer using a combination of dosimetry and CT radiomics[J].Eur Radiol,2019,29(11):6080-6088.
26
Tolkach Y,Wolgast LM,Damanakis A,et al.Artificial intelligence for tumour tissue detection and histological regression grading in oesophageal adenocarcinomas:a retrospective algorithm development and validation study[J].Lancet Digit Health,2023,5(5):e265-e275.
27
Kotter E,Pinto Dos Santos D.Ethics and artificial intelligence[J].Radiologie(Heidelb),2024,64(6):498-502.
28
Morgan E,Soerjomataram I,Rumgay H,et al.The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040:New Estimates From GLOBOCAN 2020[J].Gastroenterology,2022,163(3):649-658.e2.
29
Cui Y,Li Z,Xiang M,et al.Machine learning models predict overall survival and progression free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image radiomics signatures[J].Radiat Oncol,2022,17(1):212.
30
Xiong J,Yu W,Ma J,et al.The Role of PET-Based Radiomic Features in Predicting Local Control of Esophageal Cancer Treated with Concurrent Chemoradiotherapy[J].Sci Rep,2018,8(1):9902.
31
Gong J,Lu J,Zhang W,et al.A CT-based subregional radiomics nomogram for predicting local recurrence-free survival in esophageal squamous cell cancer patients treated by definitive chemoradiotherapy:a multicenter study[J].J Transl Med,2024,22(1):1108.
32
Kawahara D,Nishioka R,Murakami Y,et al.A nomogram based on pretreatment radiomics and dosiomics features for predicting overall survival associated with esophageal squamous cell cancer[J].Eur J Surg Oncol,2024,50(7):108450.
33
Kouzu K,Tsujimoto H,Imamura Y,et al.Development and Validation Study of the Prognostic Impact of Deep Learning-Determined Myxoid Stroma After Neoadjuvant Chemotherapy in Patients with Esophageal Squamous Cell Carcinoma[J].Ann Surg Oncol,2024,31(9):6300-6308.
34
Draguet C,Barragán-Montero AM,Vera MC,et al.Automated clinical decision support system with deep learning dose prediction and NTCP models to evaluate treatment complications in patients with esophageal cancer[J].Radiother Oncol,2022,176:101-107.
35
Chu Y,Zhu C,Hobbs BP,et al.Personalized Composite Dosimetric Score-Based Machine Learning Model of Severe Radiation-Induced Lymphopenia Among Patients With Esophageal Cancer[J].Int J Radiat Oncol Biol Phys,2024,120(4):1172-1180.
36
Li C,Zhang J,Ning B,et al.Radiation pneumonitis prediction with dual-radiomics for esophageal cancer underwent radiotherapy[J].Radiat Oncol,2024,19(1):72.
37
Skrede OJ,De Raedt S,Kleppe A,et al.Deep learning for prediction of colorectal cancer outcome:a discovery and validation study[J].Lancet,2020,395(10221):350-360.
38
Wang R,Dai W,Gong J,et al.Development of a novel combined nomogram model integrating deep learningpathomics,radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients[J].J Hematol Oncol,2022,15(1):11.
39
Sun JM,Shen L,Shah MA,et al.Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590):a randomised,placebo-controlled,phase 3 study[J].Lancet,2021,398(10302):759-771.
40
Janjigian YY,Shitara K,Moehler M,et al.First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric,gastro-oesophageal junction,and oesophageal adenocarcinoma (CheckMate 649):a randomised,open-label,phase 3 trial[J].Lancet,2021,398(10294):27-40.
41
Shen L,Kato K,Kim SB,et al.Tislelizumab Versus Chemotherapy as Second-Line Treatment for Advanced or Metastatic Esophageal Squamous Cell Carcinoma (RATIONALE-302):A Randomized Phase III Study[J].J Clin Oncol,2022,40(26):3065-3076.
42
Li C,Zhao S,Zheng Y,et al.Preoperative pembrolizumab combined with chemoradiotherapy for oesophageal squamous cell carcinoma (PALACE-1)[J].Eur J Cancer,2021,144:232-241.
43
Wang JL,Tang LS,Zhong X,et al.A machine learning radiomics based on enhanced computed tomography to predict neoadjuvant immunotherapy for resectable esophageal squamous cell carcinoma[J].Front Immunol,2024,15:1405146.
44
Zhu Y,Yao W,Xu BC,et al.Predicting response to immunotherapy plus chemotherapy in patients with esophageal squamous cell carcinoma using non-invasive Radiomic biomarkers[J].BMC Cancer,2021,21(1):1167.
45
Shi L,Li C,Bai Y,et al.CT radiomics to predict pathologic complete response after neoadjuvant immunotherapy plus chemoradiotherapy in locally advanced esophageal squamous cell carcinoma[J].Eur Radiol,2025,35(3):1594-1604.
46
Qi WX,Li S,Xiao J,et al.A machine learning approach using (18)F-FDG PET and enhanced CT scan-based radiomics combined with clinical model to predict pathological complete response in ESCC patients after neoadjuvant chemoradiotherapy and anti-PD-1 inhibitors[J].Front Immunol,2024,15:1351750.
47
Lin F,Zhu LX,Ye ZM,et al.Computed Tomography-Based Intratumor Heterogeneity Predicts Response to Immunotherapy Plus Chemotherapy in Esophageal Squamous Cell Carcinoma[J].Acad Radiol,2024,31(12):4886-4899.
48
Li B,Qin W,Yang L,et al.From pixels to patient care:deep learning-enabled pathomics signature offers precise outcome predictions for immunotherapy in esophageal squamous cell cancer[J].J Transl Med,2024,22(1):195.
49
Yang Y,Yi Y,Wang Z,et al.A combined nomogram based on radiomics and hematology to predict the pathological complete response of neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma[J].BMC Cancer,2024,24(1):460.
50
Qi Y,Hu Y,Lin C,et al.A preoperative predictive model based on multi-modal features to predict pathological complete response after neoadjuvant chemoimmunotherapy in esophageal cancer patients[J].Front Immunol,2025,16:1530279.
51
Fick CN,Dunne EG,Sihag S,et al.Immunotherapy for Resectable Locally Advanced Esophageal Carcinoma[J].Ann Thorac Surg,2024,118(1):130-140.
52
Goetz L,Seedat N,Vandersluis R,et al.Generalization-a key challenge for responsible AI in patient-facing clinical applications[J].NPJ Digit Med,2024,7(1):126.
[1] 傅小芳, 杨青翰, 孙昌琴, 豆梦杰, 胡峻溥, 孙灏, 吕发勤. 基于YOLO 11的肢体长骨骨折断端超声检测模型的临床价值[J/OL]. 中华医学超声杂志(电子版), 2025, 22(06): 541-546.
[2] 何冠南, 谭莹, 路玉欢, 蒲斌, 扬水华, 张仁铁, 陈明, 石智红, 钟晓红, 陈曦, 燕柳屹, 李胜利. 人工智能在胎儿超声心动图标准切面质量控制中的多中心应用研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(05): 388-396.
[3] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[4] 《乳腺癌新辅助免疫治疗专家共识》专家组. 乳腺癌新辅助免疫治疗专家共识(2025年版)[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(04): 193-197.
[5] 郑仁杰, 张尊庶, 黄陈. 病理组学在胃癌诊治中的应用与挑战[J/OL]. 中华普通外科学文献(电子版), 2025, 19(04): 274-280.
[6] 吴少锋, 王茂, 马海龙, 史英, 代引海. 新辅助治疗后肿瘤退缩分级对局部进展期直肠癌患者全直肠系膜切除术效果的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 535-538.
[7] 王明媚, 李勇. 肾盂癌的影像诊断及进展[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(04): 412-417.
[8] 詹彧鸣, 张翔, 翁山耕. 人工智能在腹膜后肿瘤精准诊疗中的研究进展[J/OL]. 中华疝和腹壁外科杂志(电子版), 2025, 19(04): 371-376.
[9] 汪锐, 陈自武, 杨朴强, 田静, 陈莹, 林成, 汪伟. 基于血清标志物机器学习模型对慢性阻塞性肺疾病急性加重期机械通气风险的预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 615-619.
[10] 沈月秋, 曹梦琳, 许梅杰, 吴敏丹, 吴凯怡, 陆琳娟. 基于可解释机器学习预测慢性阻塞性肺疾病患者急性加重风险研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(03): 380-384.
[11] 唐善华, 赖展鸿, 刘海晴, 王小振, 王恺, 周杰. 基于XGBoost算法构建肝癌肝切除术后肝衰竭早期识别预测模型[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 725-731.
[12] 杨钰泽, 徐家豪, 杨一石, 王明达, 杨田. 肝细胞癌新辅助治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(04): 515-521.
[13] 李媛媛, 李荣山. 机器学习:肾脏疾病研究与诊疗的新前沿[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 181-187.
[14] 王柯云, 孙雅佳, 李甜, 张钰哲, 郑颖, 张伟光, 王倩, 董哲毅. 糖尿病肾脏疾病早期发生风险预测模型的研究进展[J/OL]. 中华肾病研究电子杂志, 2025, 14(04): 218-225.
[15] 王玲洁, 王瑷萍, 李朝军, 丁跃有, 杨德业, 赵清, 崔兆强, 王京昆, 王宏宇. 心脏和血管健康技术创新研发策略专家共识(2024第一次报告,上海)[J/OL]. 中华临床医师杂志(电子版), 2025, 19(05): 323-336.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?