切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2025, Vol. 12 ›› Issue (02) : 96 -104. doi: 10.3877/cma.j.issn.2095-8773.2025.02.04

综述

人工智能驱动食管癌新辅助精准治疗
许一鸣1, 范雪源1, 李世浩2, 徐一帆1, 李博文1, 耿振洋1, 刘亚飞1, 叶贯超1, 李峰1, 黄岚2, 齐宇1,()   
  1. 1. 450052 郑州,郑州大学第一附属医院胸外一科
    2. 450052 郑州,郑州大学第一附属医院医学转化中心
  • 收稿日期:2025-03-24 修回日期:2025-04-14 接受日期:2025-04-25 出版日期:2025-05-28
  • 通信作者: 齐宇

Artificial intelligence-driven neoadjuvant precision treatment of esophageal cancer

Yiming Xu1, Xueyuan Fan1, Shihao Li2, Yifan Xu1, Bowen Li1, Zhenyang Geng1, Yafei Liu1, Guanchao Ye1, Feng Li1, Lan Huang2, Yu Qi1,()   

  1. 1. First Department of Thoracic Surgery,The First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China
    2. Medical Transformation Center,The First Affiliated Hospital of Zhengzhou University,Zhengzhou 450052,China
  • Received:2025-03-24 Revised:2025-04-14 Accepted:2025-04-25 Published:2025-05-28
  • Corresponding author: Yu Qi
引用本文:

许一鸣, 范雪源, 李世浩, 徐一帆, 李博文, 耿振洋, 刘亚飞, 叶贯超, 李峰, 黄岚, 齐宇. 人工智能驱动食管癌新辅助精准治疗[J/OL]. 中华胸部外科电子杂志, 2025, 12(02): 96-104.

Yiming Xu, Xueyuan Fan, Shihao Li, Yifan Xu, Bowen Li, Zhenyang Geng, Yafei Liu, Guanchao Ye, Feng Li, Lan Huang, Yu Qi. Artificial intelligence-driven neoadjuvant precision treatment of esophageal cancer[J/OL]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2025, 12(02): 96-104.

食管癌作为侵袭性强、预后差的消化道恶性肿瘤,其治疗策略需个体化与精准化。近年来,人工智能(AI)技术的快速发展为食管癌治疗的各个环节注入了新动能,显著提升了疗效预测、方案制订和动态干预的精准度。本文系统综述AI在食管癌治疗中的核心应用场景与最新进展,并探讨其临床转化面临的挑战与未来方向。

Esophageal cancer is a highly aggressive digestive tract malignancy with a poor prognosis.Its treatment strategies require individualization and precision.Recent advances in artificial intelligence (AI) have enhanced various aspects of esophageal cancer treatment, significantly improving the accuracy of treatment outcome prediction,treatment plan formulation,and dynamic intervention.This article systematically reviews the core applications and recent progress of AI in the treatment of esophageal cancer,and discusses the challenges and future directions for its clinical application.

表1 人工智能预测新辅助放化疗病理完全缓解
表2 人工智能在食管癌免疫治疗临床决策的应用
1
Bray F,Laversanne M,Sung H,et al.Global cancer statistics 2022:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA Cancer J Clin,2024,74(3):229-263.
2
郑荣寿,陈茹,韩冰峰,等.2022年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志,2024,46(3):221-231.
3
Siegel RL,Giaquinto AN,Jemal A.Cancer statistics,2024[J].CA Cancer J Clin,2024,74(1):12-49.
4
Tang H,Wang H,Fang Y,et al.Neoadjuvant chemoradiotherapy versus neoadjuvant chemotherapy followed by minimally invasive esophagectomy for locally advanced esophageal squamous cell carcinoma:a prospective multicenter randomized clinical trial[J].Ann Oncol,2023,34(2):163-172.
5
Klevebro F,Alexandersson von Döbeln G,Wang N,et al.A randomized clinical trial of neoadjuvant chemotherapy versus neoadjuvant chemoradiotherapy for cancer of the oesophagus or gastro-oesophageal junction[J].Ann Oncol,2016,27(4):660-667.
6
Deo RC.Machine Learning in Medicine[J].Circulation,2015,132(20):1920-1930.
7
Misra I,Maaten LVD.Self-Supervised Learning of Pretext-Invariant Representations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA:IEEE,2019:6706-6716.
8
Chauhan NK,Singh K.A Review on Conventional Machine Learning vs Deep Learning[C]//2018 International Conference on Computing, Power and Communication Technologies(GUCON).Greater Noida:IEEE;2018.
9
Klionsky DJ,Abdelmohsen K,Abe A,et al.Guidelines for the use and interpretation of assays for monitoring autophagy(3rd edition)[J].Autophagy,2016,12(1):1-222.
10
Nohara Y,Matsumoto K,Soejima H,et al.Explanation of machine learning models using shapley additive explanation and application for real data in hospital[J].Comput Methods Programs Biomed,2022,214:106584.
11
Okamura A,Watanabe M,Okui J,et al.Neoadjuvant Chemotherapy or Neoadjuvant Chemoradiotherapy for Patients with Esophageal Squamous Cell Carcinoma:Real-World Data Comparison from A Japanese Nationwide Study[J].Ann Surg Oncol,2023,30(9):5885-5894.
12
Reynolds JV,Preston SR,O’Neill B,et al.Trimodality therapy versus perioperative chemotherapy in the management of locally advanced adenocarcinoma of the oesophagus and oesophagogastric junction(Neo-AEGIS):an open-label,randomised,phase 3 trial[J].Lancet Gastroenterol Hepatol,2023,8(11):1015-1027.
13
Kato K,Machida R,Ito Y,et al.Doublet chemotherapy,triplet chemotherapy,or doublet chemotherapy combined with radiotherapy as neoadjuvant treatment for locally advanced oesophageal cancer(JCOG1109 NExT):a randomised,controlled,open-label,phase 3 trial[J].Lancet,2024,404(10447):55-66.
14
Wu YY,Dai L,Yang YB,et al.Long-Term Survival and Recurrence Patterns in Locally Advanced Esophageal Squamous Cell Carcinoma Patients with Pathologic Complete Response After Neoadjuvant Chemotherapy Followed by Surgery[J].Ann Surg Oncol,2024,31(8):5047-5054.
15
Ou J,Zhou HY,Qin HL,et al.Baseline CT radiomics features to predict pathological complete response of advanced esophageal squamous cell carcinoma treated with neoadjuvant chemotherapy using paclitaxel and cisplatin[J].Eur J Radiol,2024,181:111763.
16
Liu Y,Wang Y,Wang X,et al.MR radiomics predicts pathological complete response of esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy:a multicenter study[J].Cancer Imaging,2024,24(1):16.
17
Fan L,Yang Z,Chang M,et al.CT-based delta-radiomics nomogram to predict pathological complete response after neoadjuvant chemoradiotherapy in esophageal squamous cell carcinoma patients[J].J Transl Med,2024,22(1):579.
18
Lu S,Wang C,Liu Y,et al.The MRI radiomics signature can predict the pathologic response to neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma[J].Eur Radiol,2024,34(1):485-494.
19
Wang J,Zhu X,Zeng J,et al.Using clinical and radiomic feature-based machine learning models to predict pathological complete response in patients with esophageal squamous cell carcinoma receiving neoadjuvant chemoradiation[J].Eur Radiol,2023,33(12):8554-8563.
20
Li Z,Wang F,Zhang H,et al.A radiomics strategy based on CT intra-tumoral and peritumoral regions for preoperative prediction of neoadjuvant chemoradiotherapy for esophageal cancer[J].Eur J Surg Oncol,2024,50(4):108052.
21
Noordman BJ,Verdam MGE,Lagarde SM,et al.Effect of Neoadjuvant Chemoradiotherapy on Health-Related Quality of Life in Esophageal or Junctional Cancer:Results From the Randomized CROSS Trial[J].J Clin Oncol,2018,36(3):268-275.
22
Buck A,Prade VM,Kunzke T,et al.Metabolic tumor constitution is superior to tumor regression grading for evaluating response to neoadjuvant therapy of esophageal adenocarcinoma patients[J].J Pathol,2022,256(2):202-213.
23
Xie Y,Liu Q,Ji C,et al.An artificial neural network-based radiomics model for predicting the radiotherapy response of advanced esophageal squamous cell carcinoma patients:a multicenter study[J].Sci Rep,2023,13(1):8673.
24
Li X,Gao H,Zhu J,et al.3D Deep Learning Model for the Pretreatment Evaluation of Treatment Response in Esophageal Carcinoma:A Prospective Study (ChiCTR2000039279)[J].Int J Radiat Oncol Biol Phys,2021,111(4):926-935.
25
Jin X,Zheng X,Chen D,et al.Prediction of response after chemoradiation for esophageal cancer using a combination of dosimetry and CT radiomics[J].Eur Radiol,2019,29(11):6080-6088.
26
Tolkach Y,Wolgast LM,Damanakis A,et al.Artificial intelligence for tumour tissue detection and histological regression grading in oesophageal adenocarcinomas:a retrospective algorithm development and validation study[J].Lancet Digit Health,2023,5(5):e265-e275.
27
Kotter E,Pinto Dos Santos D.Ethics and artificial intelligence[J].Radiologie(Heidelb),2024,64(6):498-502.
28
Morgan E,Soerjomataram I,Rumgay H,et al.The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040:New Estimates From GLOBOCAN 2020[J].Gastroenterology,2022,163(3):649-658.e2.
29
Cui Y,Li Z,Xiang M,et al.Machine learning models predict overall survival and progression free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image radiomics signatures[J].Radiat Oncol,2022,17(1):212.
30
Xiong J,Yu W,Ma J,et al.The Role of PET-Based Radiomic Features in Predicting Local Control of Esophageal Cancer Treated with Concurrent Chemoradiotherapy[J].Sci Rep,2018,8(1):9902.
31
Gong J,Lu J,Zhang W,et al.A CT-based subregional radiomics nomogram for predicting local recurrence-free survival in esophageal squamous cell cancer patients treated by definitive chemoradiotherapy:a multicenter study[J].J Transl Med,2024,22(1):1108.
32
Kawahara D,Nishioka R,Murakami Y,et al.A nomogram based on pretreatment radiomics and dosiomics features for predicting overall survival associated with esophageal squamous cell cancer[J].Eur J Surg Oncol,2024,50(7):108450.
33
Kouzu K,Tsujimoto H,Imamura Y,et al.Development and Validation Study of the Prognostic Impact of Deep Learning-Determined Myxoid Stroma After Neoadjuvant Chemotherapy in Patients with Esophageal Squamous Cell Carcinoma[J].Ann Surg Oncol,2024,31(9):6300-6308.
34
Draguet C,Barragán-Montero AM,Vera MC,et al.Automated clinical decision support system with deep learning dose prediction and NTCP models to evaluate treatment complications in patients with esophageal cancer[J].Radiother Oncol,2022,176:101-107.
35
Chu Y,Zhu C,Hobbs BP,et al.Personalized Composite Dosimetric Score-Based Machine Learning Model of Severe Radiation-Induced Lymphopenia Among Patients With Esophageal Cancer[J].Int J Radiat Oncol Biol Phys,2024,120(4):1172-1180.
36
Li C,Zhang J,Ning B,et al.Radiation pneumonitis prediction with dual-radiomics for esophageal cancer underwent radiotherapy[J].Radiat Oncol,2024,19(1):72.
37
Skrede OJ,De Raedt S,Kleppe A,et al.Deep learning for prediction of colorectal cancer outcome:a discovery and validation study[J].Lancet,2020,395(10221):350-360.
38
Wang R,Dai W,Gong J,et al.Development of a novel combined nomogram model integrating deep learningpathomics,radiomics and immunoscore to predict postoperative outcome of colorectal cancer lung metastasis patients[J].J Hematol Oncol,2022,15(1):11.
39
Sun JM,Shen L,Shah MA,et al.Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590):a randomised,placebo-controlled,phase 3 study[J].Lancet,2021,398(10302):759-771.
40
Janjigian YY,Shitara K,Moehler M,et al.First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric,gastro-oesophageal junction,and oesophageal adenocarcinoma (CheckMate 649):a randomised,open-label,phase 3 trial[J].Lancet,2021,398(10294):27-40.
41
Shen L,Kato K,Kim SB,et al.Tislelizumab Versus Chemotherapy as Second-Line Treatment for Advanced or Metastatic Esophageal Squamous Cell Carcinoma (RATIONALE-302):A Randomized Phase III Study[J].J Clin Oncol,2022,40(26):3065-3076.
42
Li C,Zhao S,Zheng Y,et al.Preoperative pembrolizumab combined with chemoradiotherapy for oesophageal squamous cell carcinoma (PALACE-1)[J].Eur J Cancer,2021,144:232-241.
43
Wang JL,Tang LS,Zhong X,et al.A machine learning radiomics based on enhanced computed tomography to predict neoadjuvant immunotherapy for resectable esophageal squamous cell carcinoma[J].Front Immunol,2024,15:1405146.
44
Zhu Y,Yao W,Xu BC,et al.Predicting response to immunotherapy plus chemotherapy in patients with esophageal squamous cell carcinoma using non-invasive Radiomic biomarkers[J].BMC Cancer,2021,21(1):1167.
45
Shi L,Li C,Bai Y,et al.CT radiomics to predict pathologic complete response after neoadjuvant immunotherapy plus chemoradiotherapy in locally advanced esophageal squamous cell carcinoma[J].Eur Radiol,2025,35(3):1594-1604.
46
Qi WX,Li S,Xiao J,et al.A machine learning approach using (18)F-FDG PET and enhanced CT scan-based radiomics combined with clinical model to predict pathological complete response in ESCC patients after neoadjuvant chemoradiotherapy and anti-PD-1 inhibitors[J].Front Immunol,2024,15:1351750.
47
Lin F,Zhu LX,Ye ZM,et al.Computed Tomography-Based Intratumor Heterogeneity Predicts Response to Immunotherapy Plus Chemotherapy in Esophageal Squamous Cell Carcinoma[J].Acad Radiol,2024,31(12):4886-4899.
48
Li B,Qin W,Yang L,et al.From pixels to patient care:deep learning-enabled pathomics signature offers precise outcome predictions for immunotherapy in esophageal squamous cell cancer[J].J Transl Med,2024,22(1):195.
49
Yang Y,Yi Y,Wang Z,et al.A combined nomogram based on radiomics and hematology to predict the pathological complete response of neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma[J].BMC Cancer,2024,24(1):460.
50
Qi Y,Hu Y,Lin C,et al.A preoperative predictive model based on multi-modal features to predict pathological complete response after neoadjuvant chemoimmunotherapy in esophageal cancer patients[J].Front Immunol,2025,16:1530279.
51
Fick CN,Dunne EG,Sihag S,et al.Immunotherapy for Resectable Locally Advanced Esophageal Carcinoma[J].Ann Thorac Surg,2024,118(1):130-140.
52
Goetz L,Seedat N,Vandersluis R,et al.Generalization-a key challenge for responsible AI in patient-facing clinical applications[J].NPJ Digit Med,2024,7(1):126.
[1] 陈茵, 谭莹, 谭渤瀚, 何冠南, 王磊, 温昕, 朱巧珍, 梁博诚, 李胜利. 基于YOLO V8 的胎儿脐膨出超声智能质量评估与诊断[J/OL]. 中华医学超声杂志(电子版), 2025, 22(04): 305-310.
[2] 孙舒涵, 陈雅静, 宗晴晴, 栗翠英, 缪殊妹, 杨斌, 俞飞虹. 基于超声的深度学习列线图预测乳腺癌新辅助化疗后腋窝淋巴结状态的研究[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 97-105.
[3] 王昕玥, 袁亚, 束华, 曹琨芃, 叶新华, 李璐. 基于LightGBM 算法构建超声引导下凝血酶治疗假性动脉瘤剂量预测模型[J/OL]. 中华医学超声杂志(电子版), 2025, 22(02): 153-161.
[4] 张毅. 铂类药物在三阴性乳腺癌新辅助治疗中的临床及转化研究[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(03): 192-192.
[5] 李昕宇, 李玉东, 刘强. 乳腺癌前哨淋巴结活组织检查的临床应用[J/OL]. 中华乳腺病杂志(电子版), 2025, 19(02): 108-112.
[6] 房昊宇, 王筱, 张安伟, 尚丹丹, 俞炯, 曹红翠. 基于粪便代谢组学分析间充质干细胞治疗克罗恩病小鼠的有效性生物标志物[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(02): 98-104.
[7] 张克诚, 王瑞, 易磊, 周增丁. 烧烫伤创面深度评估模型HFNet 的构建及测试效果[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(03): 192-198.
[8] 黄世旺, 郄云凯, 胡海龙. 人工智能时代尿液无创检测方法在膀胱癌诊断中的应用[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 283-287.
[9] 郭寒川, 王乾宇, 吴斌. 人工智能在神经识别的研究进展及直肠癌自主神经保护的应用[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 273-276.
[10] 卓莉. 人工智能和多组学:肾脏病诊疗的新方向[J/OL]. 中华肾病研究电子杂志, 2025, 14(03): 180-180.
[11] 王秋艳, 杨爱民, 程春, 周洋. 基于食管癌术后吻合口瘘危险因素建立风险预测列线图模型及临床决策曲线分析[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 229-234.
[12] 赵顺, 韩小阳, 赵亭亭. 术前营养状态及术后早期全身免疫炎症指数、C 反应蛋白/白蛋白比值、NLR 与食管癌术后吻合口瘘的相关性[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(03): 235-239.
[13] 李娅辉, 栾琳, 黄辉云. 中青年肝癌患者根治术后不同复发时期的风险模型构建及验证[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 112-119.
[14] 赵洁, 曹文芳. 食管癌超声特征与NLR、LMR、NMR水平的相关性及对颈部Ⅳ区淋巴结转移风险的评估价值[J/OL]. 中华消化病与影像杂志(电子版), 2025, 15(02): 130-134.
[15] 马也, 瞿航, 王苇. 人工智能在脑血管病影像评价中的研究进展[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 211-215.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?