切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2025, Vol. 12 ›› Issue (02) : 105 -111. doi: 10.3877/cma.j.issn.2095-8773.2025.02.05

综述

肺癌治疗中成纤维细胞作为靶点的研究进展与前景
任千河1, 杨苏苏2, 于跃3,()   
  1. 1. 225002 扬州,苏北人民医院胸外科
    2. 210029 南京,江苏省人民医院乳腺外科
    3. 210029 南京,江苏省人民医院胸外科
  • 收稿日期:2025-02-28 修回日期:2025-04-10 接受日期:2025-05-06 出版日期:2025-05-28
  • 通信作者: 于跃

The research progress and prospects of targeting cancer-associated fibroblasts in lung cancer therapy

Qianhe Ren1, Susu Yang2, Yue Yu3,()   

  1. 1. Department of Thoracic Surgery,Northern Jiangsu People's Hospital,Yangzhou 225002,China
    2. Department of Breast Surgery,Jiangsu Provincial People's Hospital,Nanjing 210029,China
    3. Department of Thoracic Surgery,Jiangsu Provincial People's Hospital,Nanjing 210029,China
  • Received:2025-02-28 Revised:2025-04-10 Accepted:2025-05-06 Published:2025-05-28
  • Corresponding author: Yue Yu
引用本文:

任千河, 杨苏苏, 于跃. 肺癌治疗中成纤维细胞作为靶点的研究进展与前景[J/OL]. 中华胸部外科电子杂志, 2025, 12(02): 105-111.

Qianhe Ren, Susu Yang, Yue Yu. The research progress and prospects of targeting cancer-associated fibroblasts in lung cancer therapy[J/OL]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2025, 12(02): 105-111.

目前,肺癌的治疗手段尚不十分有效,因此寻找新的治疗策略和靶点具有重要的临床意义。近年来,越来越多的研究表明,肿瘤微环境(TME)异常是肺癌发生和发展的重要因素之一,其中成纤维细胞(CAFs)更是影响肺癌细胞增殖、侵袭和转移等生物学特性的重要因素。肿瘤相关CAFs作为TME的重要组成部分,对于细胞的正常生理功能具有重要的作用。在TME中,CAFs与肿瘤细胞生物学特性如侵袭、转移密切相关,研究CAFs在肺癌中的作用机制,探索其作为治疗靶点的潜在价值具有重要的意义。

Current therapeutic strategies for lung cancer remain suboptimal, underscoring the urgent need for novel treatment approaches and targets of clinical relevance.In recent years,a growing body of evidence has highlighted the pivotal role of tumor microenvironment (TME) abnormalities in the initiation and progression of lung cancer.Among the various stromal components,cancer-associated fibroblasts (CAFs) have emerged as key regulators of the malignant phenotype,significantly influencing tumor cell proliferation,invasion,and metastasis.As integral constituents of the TME,CAFs are essential for maintaining normal cellular physiology.However,when aberrantly activated within the tumor milieu,CAFs are closely associated with the aggressive biological behavior of cancer cells.Elucidating the mechanistic roles of CAFs in lung cancer and evaluating their potential as therapeutic targets hold considerable promise for advancing treatment outcomes.

图1 CAFs的分化及致癌作用。CAF:成纤维细胞;iCAF:炎性CAF;mCAF:肌成纤维型CAF;apCAF:抗原递呈型CAF;vCAF:血管生成CAF
1
Thai AA,Solomon BJ,Sequist LV,et al.Lung cancer[J].Lancet,2021,398(10299):535-554.
2
Molina JR,Yang P,Cassivi SD,et al.Non-small cell lung cancer:epidemiology,risk factors,treatment,and survivorship[J].Mayo Clin Proc,2008,83(5):584-594.
3
Chen Z,Fillmore CM,Hammerman PS,et al.Non-smallcell lung cancers:a heterogeneous set of diseases[J].Nat Rev Cancer,2014,14(8):535-546.
4
Derynck R,Turley SJ,Akhurst RJ.TGFβ biology in cancer progression and immunotherapy[J].Nat Rev Clin Oncol,2021,18(1):9-34.
5
Xia L,Oyang L,Lin J,et al.The cancer metabolic reprogramming and immune response[J].Mol Cancer,2021,20(1):28.
6
Bagaev A,Kotlov N,Nomie K,et al.Conserved pan-cancer microenvironment subtypes predict response to immunotherapy[J].Cancer Cell,2021,39(6):845-865.e7.
7
Paget S.The distribution of secondary growths in cancer of the breast.1889[J].Cancer Metastasis Rev,1989,8(2):98-101.
8
Laplane L,Duluc D,Bikfalvi A,et al.Beyond the tumour microenvironment[J].Int J Cancer,2019,145(10):2611-2618.
9
Khosravi N,Caetano MS,Cumpian AM,et al.IL22 Promotes Kras-Mutant Lung Cancer by Induction of a Protumor Immune Response and Protection of Stemness Properties[J].Cancer Immunol Res,2018,6(7):788-797.
10
Dhainaut M,Rose SA,Akturk G,et al.Spatial CRISPR genomics identifies regulators of the tumor microenvironment[J].Cell,2022,185(7):1223-1239.e20.
11
Liu J,Ren L,Li S,et al.The biology, function, and applications of exosomes in cancer[J].Acta Pharm Sin B,2021,11(9):2783-2797.
12
Piersma B,Hayward MK,Weaver VM.Fibrosis and cancer:A strained relationship[J].Biochim Biophys Acta Rev Cancer,2020,1873(2):188356.
13
Bigos KJ,Quiles CG,Lunj S,et al.Tumour response to hypoxia:understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours[J].Front Oncol,2024,14:1331355.
14
Kalluri R.The biology and function of fibroblasts in cancer[J].Nat Rev Cancer,2016,16(9):582-598.
15
Duan H,Liu Y,Gao Z,et al.Recent advances in drug delivery systems for targeting cancer stem cells[J].Acta Pharm Sin B,2021,11(1):55-70.
16
Jain S,Rick JW,Joshi RS,et al.Single-cell RNA sequencing and spatial transcriptomics reveal cancer-associated fibroblasts in glioblastoma with protumoral effects[J].J Clin Invest,2023.
17
Wu F,Yang J,Liu J,et al.Signaling pathways in cancerassociated fibroblasts and targeted therapy for cancer[J].Signal Transduct Target Ther,2021,6(1):218.
18
Costa A,Kieffer Y,Scholer-Dahirel A,et al.Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer[J].Cancer Cell,2018,33(3):463-479.e10.
19
Rimal R,Desai P,Daware R,et al.Cancer-associated fibroblasts:Origin,function,imaging,and therapeutic targeting[J].Adv Drug Deliv Rev,2022,189:114504.
20
Huang H,Wang Z,Zhang Y,et al.Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer[J].Cancer Cell,2022,40(6):656-673.e7.
21
Tao Z,Huang C,Wang D,et al.Lactate induced mesenchymal stem cells activation promotes gastric cancer cells migration and proliferation[J].Exp Cell Res,2023,424(1):113492.
22
Kundu M,Butti R,Panda VK,et al.Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer[J].Mol Cancer,2024,23(1):92.
23
Cho H,Kim JH,Jun CD,et al.CAF-Derived IL6 and GM-CSF Cooperate to Induce M2-like TAMs-Response[J].Clin Cancer Res,2019,25(2):894-895.
24
Radomska KJ,Coulpier F,Gresset A,et al.Cellular Origin,Tumor Progression,and Pathogenic Mechanisms of Cutaneous Neurofibromas Revealed by Mice with Nf1 Knockout in Boundary Cap Cells[J].Cancer Discov,2019,9(1):130-147.
25
Yang M,Li J,Gu P,et al.The application of nanoparticles in cancer immunotherapy:Targeting tumor microenvironment[J].Bioact Mater,2021,6(7):1973-1987.
26
Farhood B,Najafi M,Mortezaee K.CD8(+)cytotoxic T lymphocytes in cancer immunotherapy:A review[J].J Cell Physiol,2019,234(6):8509-8521.
27
Niu N,Shen X,Wang Z,et al.Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer[J].Cancer Cell,2024,42(5):869-884.e9.
28
Jenkins BH,Tracy I,Rodrigues MFSD,et al.Single cell and spatial analysis of immune-hot and immune-cold tumours identifies fibroblast subtypes associated with distinct immunological niches and positive immunotherapy response[J].Mol Cancer,2025,24(1):3.
29
Huang B,Chen Q,Ye Z,et al.Construction of a Matrix Cancer-Associated Fibroblast Signature Gene-Based Risk Prognostic Signature for Directing Immunotherapy in Patients with Breast Cancer Using Single-Cell Analysis and Machine Learning[J].Int J Mol Sci,2023,24(17):13175.
30
Song J,Wei R,Liu C,et al.Antigen-presenting cancer associated fibroblasts enhance antitumor immunity and predict immunotherapy response[J].Nat Commun,2025,16(1):2175.
31
Niu Z,Chen C,Wang S,et al.HBO1 catalyzes lysine lactylation and mediates histone H3K9la to regulate gene transcription[J].Nat Commun,2024,15(1):3561.
32
Coursier D,Calvo F.CAFs vs. TECs:when blood feuds fuel cancer progression, dissemination and therapeutic resistance[J].Cell Oncol(Dordr),2024,47(4):1091-1112.
33
Mezawa Y,Orimo A.Phenotypic heterogeneity, stability and plasticity in tumor-promoting carcinoma-associated fibroblasts[J].FEBS J,2022,289(9):2429-2447.
34
Kim DK,Jeong J,Lee DS,et al.PD-L1-directed PlGF/VEGF blockade synergizes with chemotherapy by targeting CD141(+)cancer-associated fibroblasts in pancreatic cancer[J].Nat Commun,2022,13(1):6292.
35
Liu B,Zhang B,Qi J,et al.Targeting MFGE8 secreted by cancer-associated fibroblasts blocks angiogenesis and metastasis in esophageal squamous cell carcinoma[J].Proc Natl Acad Sci U S A,2023,120(42):e2307914120.
36
Broz MT,Ko EY,Ishaya K,et al.Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas[J].Nat Commun,2024,15(1):2498.
37
Ling J,Chiao PJ.Two Birds with One Stone:Therapeutic Targeting of IL1α Signaling Pathways in Pancreatic Ductal Adenocarcinoma and the Cancer-Associated Fibroblasts[J].Cancer Discov,2019,9(2):173-175.
38
Garcia Garcia CJ,Huang Y,Fuentes NR,et al.Stromal HIF2 Regulates Immune Suppression in the Pancreatic Cancer Microenvironment[J].Gastroenterology,2022,162(7):2018-2031.
39
Liu Z,Hayashi H,Matsumura K,et al.Hyperglycaemia induces metabolic reprogramming into a glycolytic phenotype and promotes epithelial-mesenchymal transitions via YAP/TAZHedgehog signalling axis in pancreatic cancer[J].Br J Cancer,2023,128(5):844-856.
40
Sahai E,Astsaturov I,Cukierman E,et al.A framework for advancing our understanding of cancer-associated fibroblasts[J].Nat Rev Cancer,2020,20(3):174-186.
41
Grout JA,Sirven P,Leader AM,et al.Spatial Positioning and Matrix Programs of Cancer-Associated Fibroblasts Promote T-cell Exclusion in Human Lung Tumors[J].Cancer Discov,2022,12(11):2606-2625.
42
Tsoumakidou M.The advent of immune stimulating CAFs in cancer[J].Nat Rev Cancer,2023,23(4):258-269.
43
Zhang Y,Fang Z,Pan D,et al.Dendritic Polymer-Based Nanomedicines Remodel the Tumor Stroma:Improve Drug Penetration and Enhance Antitumor Immune Response[J].Adv Mater,2024,36(25):e2401304.
44
Chen X,Song E.Turning foes to friends:targeting cancer-associated fibroblasts[J].Nat Rev Drug Discov,2019,18(2):99-115.
45
Liu Y,Xun Z,Ma K,et al.Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy[J].J Hepatol,2023,78(4):770-782.
46
Zhang H,Yue X,Chen Z,et al.Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment:new opportunities in cancer immunotherapy and advances in clinical trials[J].Mol Cancer,2023,22(1):159.
47
Ma C,Yang C,Peng A,et al.Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancerassociated fibroblasts and tumor microenvironment[J].Mol Cancer,2023,22(1):170.
[1] 孙慧洁, 冯新嫄, 刘天赐, 刘彦昭, 锁仁静, 罗平, 李亮. 出生后不同狭窄程度及是否手术干预的孤立性肺动脉狭窄胎儿产前超声图像特征[J/OL]. 中华医学超声杂志(电子版), 2025, 22(03): 203-208.
[2] 曾舒昊, 康博禹, 郑高赞, 郑建勇, 丰帆. 青年结直肠癌患者的临床病理特征及预后分析[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 449-452.
[3] 李盼, 张华秦. 不同腹腔镜胆囊切除术治疗胆囊结石的疗效比较研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(04): 388-391.
[4] 刘伟博, 李林, 张玉斌. ERAS理念下的经脐单孔腹腔镜胆囊切除术对患者术后恢复的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 278-281.
[5] 李鹏, 刘光世, 李涛. 基于黑色素瘤相关抗原A6在胃癌转移与预后的作用机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(03): 282-284.
[6] 郄云凯, 张哲, 梁山, 吴周亮, 李雨竹, 付晨辉, 沈冲, 胡海龙. 经尿道膀胱肿瘤整块切除术在T1期膀胱癌病理亚分期中的价值[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 303-308.
[7] 龙朝辉, 陈丹, 王依杰, 瞿根义, 徐勇, 阳光, 黄文琳, 汤乘. 膀胱尿路上皮癌血管生成相关LncRNA预后评估模型的构建与分析[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(03): 315-322.
[8] 甘翌翔, 欧阳俐颖, 潘扬勋, 张耀军, 陈敏山, 徐立. ICGR15和ALBI评分对肝动脉灌注化疗后肝癌肝切除术后肝衰竭和预后的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 395-401.
[9] 毛伟民, 蓝祝晶, 徐邦浩, 朱海, 王继龙, 金宗睿, 蒙柄成, 卢婷婷, 曾晶晶, 吕自力, 宋瑞, 文张. 肝肉瘤样癌14例临床诊疗分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 435-441.
[10] 颜军, 周强, 郭诗翔. 海德堡三角清扫在胰腺癌外科治疗中应用的系统评价[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 449-455.
[11] 郑秉礼, 彭洁, 孟塬. KRAS基因突变对可切除胰腺癌临床预后的影响[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 456-462.
[12] 张铭燊, 胡永威, 陈德盛, 俞浩远, 梁智星, 陈玉涛, 叶林森, 李华, 杨扬. CEBPZOS通过调控肿瘤增殖与迁移促进肝癌进展的机制研究[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(03): 463-470.
[13] 李干斌, 张潇, 邱小原, 王晨童, 徐徕, 牛备战, 张冠南, 陆君阳, 吴斌, 肖毅, 林国乐. 早发性和晚发性局部进展期直肠癌的临床病理特征和远期预后分析[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 234-241.
[14] 沈汶娟, 潘怡, 董林, 邹霜梅. 中国微卫星不稳定大肠癌患者临床病理特征分析[J/OL]. 中华结直肠疾病电子杂志, 2025, 14(03): 251-258.
[15] 广东省护理学会肺癌个案管理专业委员会, 广东省医学会肺部肿瘤学分会. 肺癌术后并发皮下气肿患者护理规范管理专家共识[J/OL]. 中华临床医师杂志(电子版), 2025, 19(03): 180-187.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?