切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2025, Vol. 12 ›› Issue (02) : 105 -111. doi: 10.3877/cma.j.issn.2095-8773.2025.02.05

所属专题: 文献

综述

肺癌治疗中成纤维细胞作为靶点的研究进展与前景
任千河1, 杨苏苏2, 于跃3,()   
  1. 1. 225002 扬州,苏北人民医院胸外科
    2. 210029 南京,江苏省人民医院乳腺外科
    3. 210029 南京,江苏省人民医院胸外科
  • 收稿日期:2025-02-28 修回日期:2025-04-10 接受日期:2025-05-06 出版日期:2025-05-28
  • 通信作者: 于跃

The research progress and prospects of targeting cancer-associated fibroblasts in lung cancer therapy

Qianhe Ren1, Susu Yang2, Yue Yu3,()   

  1. 1. Department of Thoracic Surgery,Northern Jiangsu People's Hospital,Yangzhou 225002,China
    2. Department of Breast Surgery,Jiangsu Provincial People's Hospital,Nanjing 210029,China
    3. Department of Thoracic Surgery,Jiangsu Provincial People's Hospital,Nanjing 210029,China
  • Received:2025-02-28 Revised:2025-04-10 Accepted:2025-05-06 Published:2025-05-28
  • Corresponding author: Yue Yu
引用本文:

任千河, 杨苏苏, 于跃. 肺癌治疗中成纤维细胞作为靶点的研究进展与前景[J/OL]. 中华胸部外科电子杂志, 2025, 12(02): 105-111.

Qianhe Ren, Susu Yang, Yue Yu. The research progress and prospects of targeting cancer-associated fibroblasts in lung cancer therapy[J/OL]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2025, 12(02): 105-111.

目前,肺癌的治疗手段尚不十分有效,因此寻找新的治疗策略和靶点具有重要的临床意义。近年来,越来越多的研究表明,肿瘤微环境(TME)异常是肺癌发生和发展的重要因素之一,其中成纤维细胞(CAFs)更是影响肺癌细胞增殖、侵袭和转移等生物学特性的重要因素。肿瘤相关CAFs作为TME的重要组成部分,对于细胞的正常生理功能具有重要的作用。在TME中,CAFs与肿瘤细胞生物学特性如侵袭、转移密切相关,研究CAFs在肺癌中的作用机制,探索其作为治疗靶点的潜在价值具有重要的意义。

Current therapeutic strategies for lung cancer remain suboptimal, underscoring the urgent need for novel treatment approaches and targets of clinical relevance.In recent years,a growing body of evidence has highlighted the pivotal role of tumor microenvironment (TME) abnormalities in the initiation and progression of lung cancer.Among the various stromal components,cancer-associated fibroblasts (CAFs) have emerged as key regulators of the malignant phenotype,significantly influencing tumor cell proliferation,invasion,and metastasis.As integral constituents of the TME,CAFs are essential for maintaining normal cellular physiology.However,when aberrantly activated within the tumor milieu,CAFs are closely associated with the aggressive biological behavior of cancer cells.Elucidating the mechanistic roles of CAFs in lung cancer and evaluating their potential as therapeutic targets hold considerable promise for advancing treatment outcomes.

图1 CAFs的分化及致癌作用。CAF:成纤维细胞;iCAF:炎性CAF;mCAF:肌成纤维型CAF;apCAF:抗原递呈型CAF;vCAF:血管生成CAF
1
Thai AA,Solomon BJ,Sequist LV,et al.Lung cancer[J].Lancet,2021,398(10299):535-554.
2
Molina JR,Yang P,Cassivi SD,et al.Non-small cell lung cancer:epidemiology,risk factors,treatment,and survivorship[J].Mayo Clin Proc,2008,83(5):584-594.
3
Chen Z,Fillmore CM,Hammerman PS,et al.Non-smallcell lung cancers:a heterogeneous set of diseases[J].Nat Rev Cancer,2014,14(8):535-546.
4
Derynck R,Turley SJ,Akhurst RJ.TGFβ biology in cancer progression and immunotherapy[J].Nat Rev Clin Oncol,2021,18(1):9-34.
5
Xia L,Oyang L,Lin J,et al.The cancer metabolic reprogramming and immune response[J].Mol Cancer,2021,20(1):28.
6
Bagaev A,Kotlov N,Nomie K,et al.Conserved pan-cancer microenvironment subtypes predict response to immunotherapy[J].Cancer Cell,2021,39(6):845-865.e7.
7
Paget S.The distribution of secondary growths in cancer of the breast.1889[J].Cancer Metastasis Rev,1989,8(2):98-101.
8
Laplane L,Duluc D,Bikfalvi A,et al.Beyond the tumour microenvironment[J].Int J Cancer,2019,145(10):2611-2618.
9
Khosravi N,Caetano MS,Cumpian AM,et al.IL22 Promotes Kras-Mutant Lung Cancer by Induction of a Protumor Immune Response and Protection of Stemness Properties[J].Cancer Immunol Res,2018,6(7):788-797.
10
Dhainaut M,Rose SA,Akturk G,et al.Spatial CRISPR genomics identifies regulators of the tumor microenvironment[J].Cell,2022,185(7):1223-1239.e20.
11
Liu J,Ren L,Li S,et al.The biology, function, and applications of exosomes in cancer[J].Acta Pharm Sin B,2021,11(9):2783-2797.
12
Piersma B,Hayward MK,Weaver VM.Fibrosis and cancer:A strained relationship[J].Biochim Biophys Acta Rev Cancer,2020,1873(2):188356.
13
Bigos KJ,Quiles CG,Lunj S,et al.Tumour response to hypoxia:understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours[J].Front Oncol,2024,14:1331355.
14
Kalluri R.The biology and function of fibroblasts in cancer[J].Nat Rev Cancer,2016,16(9):582-598.
15
Duan H,Liu Y,Gao Z,et al.Recent advances in drug delivery systems for targeting cancer stem cells[J].Acta Pharm Sin B,2021,11(1):55-70.
16
Jain S,Rick JW,Joshi RS,et al.Single-cell RNA sequencing and spatial transcriptomics reveal cancer-associated fibroblasts in glioblastoma with protumoral effects[J].J Clin Invest,2023.
17
Wu F,Yang J,Liu J,et al.Signaling pathways in cancerassociated fibroblasts and targeted therapy for cancer[J].Signal Transduct Target Ther,2021,6(1):218.
18
Costa A,Kieffer Y,Scholer-Dahirel A,et al.Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer[J].Cancer Cell,2018,33(3):463-479.e10.
19
Rimal R,Desai P,Daware R,et al.Cancer-associated fibroblasts:Origin,function,imaging,and therapeutic targeting[J].Adv Drug Deliv Rev,2022,189:114504.
20
Huang H,Wang Z,Zhang Y,et al.Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer[J].Cancer Cell,2022,40(6):656-673.e7.
21
Tao Z,Huang C,Wang D,et al.Lactate induced mesenchymal stem cells activation promotes gastric cancer cells migration and proliferation[J].Exp Cell Res,2023,424(1):113492.
22
Kundu M,Butti R,Panda VK,et al.Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer[J].Mol Cancer,2024,23(1):92.
23
Cho H,Kim JH,Jun CD,et al.CAF-Derived IL6 and GM-CSF Cooperate to Induce M2-like TAMs-Response[J].Clin Cancer Res,2019,25(2):894-895.
24
Radomska KJ,Coulpier F,Gresset A,et al.Cellular Origin,Tumor Progression,and Pathogenic Mechanisms of Cutaneous Neurofibromas Revealed by Mice with Nf1 Knockout in Boundary Cap Cells[J].Cancer Discov,2019,9(1):130-147.
25
Yang M,Li J,Gu P,et al.The application of nanoparticles in cancer immunotherapy:Targeting tumor microenvironment[J].Bioact Mater,2021,6(7):1973-1987.
26
Farhood B,Najafi M,Mortezaee K.CD8(+)cytotoxic T lymphocytes in cancer immunotherapy:A review[J].J Cell Physiol,2019,234(6):8509-8521.
27
Niu N,Shen X,Wang Z,et al.Tumor cell-intrinsic epigenetic dysregulation shapes cancer-associated fibroblasts heterogeneity to metabolically support pancreatic cancer[J].Cancer Cell,2024,42(5):869-884.e9.
28
Jenkins BH,Tracy I,Rodrigues MFSD,et al.Single cell and spatial analysis of immune-hot and immune-cold tumours identifies fibroblast subtypes associated with distinct immunological niches and positive immunotherapy response[J].Mol Cancer,2025,24(1):3.
29
Huang B,Chen Q,Ye Z,et al.Construction of a Matrix Cancer-Associated Fibroblast Signature Gene-Based Risk Prognostic Signature for Directing Immunotherapy in Patients with Breast Cancer Using Single-Cell Analysis and Machine Learning[J].Int J Mol Sci,2023,24(17):13175.
30
Song J,Wei R,Liu C,et al.Antigen-presenting cancer associated fibroblasts enhance antitumor immunity and predict immunotherapy response[J].Nat Commun,2025,16(1):2175.
31
Niu Z,Chen C,Wang S,et al.HBO1 catalyzes lysine lactylation and mediates histone H3K9la to regulate gene transcription[J].Nat Commun,2024,15(1):3561.
32
Coursier D,Calvo F.CAFs vs. TECs:when blood feuds fuel cancer progression, dissemination and therapeutic resistance[J].Cell Oncol(Dordr),2024,47(4):1091-1112.
33
Mezawa Y,Orimo A.Phenotypic heterogeneity, stability and plasticity in tumor-promoting carcinoma-associated fibroblasts[J].FEBS J,2022,289(9):2429-2447.
34
Kim DK,Jeong J,Lee DS,et al.PD-L1-directed PlGF/VEGF blockade synergizes with chemotherapy by targeting CD141(+)cancer-associated fibroblasts in pancreatic cancer[J].Nat Commun,2022,13(1):6292.
35
Liu B,Zhang B,Qi J,et al.Targeting MFGE8 secreted by cancer-associated fibroblasts blocks angiogenesis and metastasis in esophageal squamous cell carcinoma[J].Proc Natl Acad Sci U S A,2023,120(42):e2307914120.
36
Broz MT,Ko EY,Ishaya K,et al.Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas[J].Nat Commun,2024,15(1):2498.
37
Ling J,Chiao PJ.Two Birds with One Stone:Therapeutic Targeting of IL1α Signaling Pathways in Pancreatic Ductal Adenocarcinoma and the Cancer-Associated Fibroblasts[J].Cancer Discov,2019,9(2):173-175.
38
Garcia Garcia CJ,Huang Y,Fuentes NR,et al.Stromal HIF2 Regulates Immune Suppression in the Pancreatic Cancer Microenvironment[J].Gastroenterology,2022,162(7):2018-2031.
39
Liu Z,Hayashi H,Matsumura K,et al.Hyperglycaemia induces metabolic reprogramming into a glycolytic phenotype and promotes epithelial-mesenchymal transitions via YAP/TAZHedgehog signalling axis in pancreatic cancer[J].Br J Cancer,2023,128(5):844-856.
40
Sahai E,Astsaturov I,Cukierman E,et al.A framework for advancing our understanding of cancer-associated fibroblasts[J].Nat Rev Cancer,2020,20(3):174-186.
41
Grout JA,Sirven P,Leader AM,et al.Spatial Positioning and Matrix Programs of Cancer-Associated Fibroblasts Promote T-cell Exclusion in Human Lung Tumors[J].Cancer Discov,2022,12(11):2606-2625.
42
Tsoumakidou M.The advent of immune stimulating CAFs in cancer[J].Nat Rev Cancer,2023,23(4):258-269.
43
Zhang Y,Fang Z,Pan D,et al.Dendritic Polymer-Based Nanomedicines Remodel the Tumor Stroma:Improve Drug Penetration and Enhance Antitumor Immune Response[J].Adv Mater,2024,36(25):e2401304.
44
Chen X,Song E.Turning foes to friends:targeting cancer-associated fibroblasts[J].Nat Rev Drug Discov,2019,18(2):99-115.
45
Liu Y,Xun Z,Ma K,et al.Identification of a tumour immune barrier in the HCC microenvironment that determines the efficacy of immunotherapy[J].J Hepatol,2023,78(4):770-782.
46
Zhang H,Yue X,Chen Z,et al.Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment:new opportunities in cancer immunotherapy and advances in clinical trials[J].Mol Cancer,2023,22(1):159.
47
Ma C,Yang C,Peng A,et al.Pan-cancer spatially resolved single-cell analysis reveals the crosstalk between cancerassociated fibroblasts and tumor microenvironment[J].Mol Cancer,2023,22(1):170.
[1] 杨志, 夏雪峰, 管文贤. DeepSurv深度学习模型辅助胃癌术后精准化疗策略研究[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 501-505.
[2] 徐其银, 韩尚志. 术前结合术后营养支持对直肠癌患者康复的影响[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 543-546.
[3] 高峰, 郝少龙, 孙浩, 韩威. 三级淋巴结构在胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 570-573.
[4] 张聪, 李成. 胰头区恶性肿瘤外科手术预后现状及相关因素的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 574-578.
[5] 张蔚, 李运涛, 尚培中, 贾志芳, 张伟, 郭伟林. 腹腔镜根治术治疗转移性胆囊癌一例报道[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(05): 589-590.
[6] 张青, 吴灵芝, 冯契靓, 陈荣荣, 秦二云, 张诚实, 赵云峰, 雷撼, 刘明. 黄芪多糖调控CEACAM7通过EMT通路抑制肺癌A549细胞恶性生物学行为的机制研究[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 552-557.
[7] 蒋延龄, 任瑾卓, 陈俊杰, 田秀丽, 莘翼翔, 张华. 血浆细胞因子谱预测非小细胞肺癌患者临床获益和免疫相关不良事件的意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 558-563.
[8] 刘学飞, 赵东, 李婷婷, 李佳浓, 葛亚楠, 李博. RB1基因状态对非小细胞肺癌免疫检查点抑制剂联合化疗反应的意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 580-585.
[9] 武军霞, 霍刚, 李姣姣, 杨会会, 马铭, 张王峰. 循环细胞因子谱预测非小细胞肺癌患者放射性肺纤维化的临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 603-608.
[10] 任阳, 林芳, 姜文娟, 王妮, 杜菲菲, 乔雅馨. 血清可溶性致癌抑制因子-2与肺动脉高压血流动力学参数及预后的相关性分析[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 609-614.
[11] 王大泉, 应开军, 孙云浩, 王尧. 胸腔镜支气管袖式切除术对肺癌患者术后并发症及呼吸功能的影响[J/OL]. 中华肺部疾病杂志(电子版), 2025, 18(04): 620-625.
[12] 张燕, 许丁伟, 胡满琴, 黄昊扬, 宋光娜, 黄洁. 术前免疫炎症指标对肝癌肝切除术患者生存预后的预测价值[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 707-715.
[13] 方兴保, 庞国莲, 李月宏, 蔡艳. 基于多组学分析MCAM在肝癌中表达及其与生存预后和免疫细胞浸润的关系[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 716-724.
[14] 胡铭语, 李敬东, 肖雨竹, 黄杰. 初始不可切除肝癌患者转化治疗序贯手术的临床疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 754-760.
[15] 陈佳乐, 余安海, 袁文康, 张超, 张冲. 肝切除术围手术期监测及处理[J/OL]. 中华肝脏外科手术学电子杂志, 2025, 14(05): 785-788.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?