切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2015, Vol. 02 ›› Issue (02) : 88 -93. doi: 10.3877/cma.j.issn.2095-8773.2015.02.003

所属专题: 文献

综述

组织工程气管替代治疗的临床转化研究进展
孙飞1, 史宏灿2,()   
  1. 1. 225001 扬州大学临床医学院胸外科;泰州市人民医院
    2. 225001 扬州大学临床医学院胸外科;江苏省中西医结合老年病防治重点实验室
  • 收稿日期:2015-03-12 出版日期:2015-05-28
  • 通信作者: 史宏灿
  • 基金资助:
    国家自然科学基金资助项目(81370118、81170014); 扬州大学"高端人才支持计划"资助项目(201431)

Research progress of clinical translating tissue-engineered tracheal replacement

Fei Sun1, Hongcan Shi2,()   

  1. 1. Department of General Thoracic Surgery, Yangzhou University, Yangzhou 225001, China; Taizhou People's Hospital, Taizhou 225300, China
    2. Department of General Thoracic Surgery, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001, China
  • Received:2015-03-12 Published:2015-05-28
  • Corresponding author: Hongcan Shi
  • About author:
    Corresponding author: Shi Hongcan, Email:
引用本文:

孙飞, 史宏灿. 组织工程气管替代治疗的临床转化研究进展[J/OL]. 中华胸部外科电子杂志, 2015, 02(02): 88-93.

Fei Sun, Hongcan Shi. Research progress of clinical translating tissue-engineered tracheal replacement[J/OL]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2015, 02(02): 88-93.

气管疾病可由多种病因引起并具有显著临床症状,治疗包括外科手术治疗乃至整个器官重建。组织工程主要通过细胞或组织修复,从而进行组织再生或替代,有望成为气管替代治疗的新途径。组织工程成功的关键因素包括天然或合成支架;自体或异体细胞;模拟(体内或体外)生理环境的生物反应器;通过分子生物或药物干预进行特定组织保护。该文旨在综述组织工程气管构建的研究现状及临床替代治疗的新进展。

Objective

There are a variety of trachea diseases with different clinical settings, which may extend from a surgical approach to total organ replacement. Tissue engineering involves modifying cells or tissues in order to repair, regenerate, or replace tissues in the body, which seems to be a promising approach for tracheareplacement.It has now become evident that the key factors for successful clinical tissue engineering include a scaffold or matrix of natural or synthetic origin, autologous or allogeneic cells, a bioreactor to mimic the physiologic environment (in vitro or in vivo), as well as site-specific tissue protection by means of biomolecule/pharmacologic intervention. This review elaborates on the essential components of the tissue-engineering approach, and discusses the progress of the revolutionary trachea clinical transplantation.

[1]
Baiguera S, D’Innocenzo B, Macchiarini P. Current status of regenerative replacement of the airway[J]. Expert Rev Respir Med, 2011, 5(4): 487-494.
[2]
He X, Fu W, Zheng J. Cell sources for trachea tissue engineering past present and future[J]. Regen Med, 2012, 7(6): 851-863.
[3]
Hinderer S, Schenke-Layland K. Tracheal tissue engineering:building on a strong foundation[J]. Expert Rev Med Devices, 2013, 10(1): 33-35.
[4]
Ott LM, Weatherly RA, Detamore MS. Overview of tracheal tissue engineering: clinical need drives the laboratory approach[J]. Ann Biomed Eng, 2011, 39(8): 2091-2113.
[5]
Hamilton N, Bullock AJ, Macneil S, et al. Tissue engineering airway mucosa: a systematic review[J]. Laryngoscope, 2014, 124(4): 961-968.
[6]
Nomoto Y, Kobayashi K, Tada Y, et al. Effect of fibroblasts on epithelial regeneration on the surface of a bioengineered trachea[J]. Ann Otol Rhinol Laryngol, 2008, 117(1): 59-64.
[7]
Okano W, Nomoto Y, Wada I, et al. Bioengineered trachea with fibroblasts in a rabbit model[J]. Ann Otol Rhinol Laryngol, 2009, 118(11): 796-804.
[8]
Mohd-Heikal MY, Aminuddin BS, Jeevanan J, et al. Autologous implantation of bilayered tissue-engineered respiratory epithelium for tracheal mucosal regenesis in a sheep model[J]. Cells Tissues Organs, 2010, 192(5): 292-302.
[9]
Kim JH, Kong WH, Kim JG, et al. Possibility of skin epithelial cell transdifferentiation in tracheal reconstruction[J]. Artif Organs, 2011, 35(2): 122-130.
[10]
Komura M, Komura H, Kanamori Y, et al. An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis[J]. J Pediatr Surg, 2008, 43(12): 2141-2146.
[11]
Tani G, Usui N, Kamiyama M, et al. In vitro construction of scaffold-free cylindrical cartilage using cell sheet-based tissue engineering[J]. Pediatr Surg Int, 2010, 26(2): 179-185.
[12]
Weidenbecher M, Tucker HM, Gilpin DA, et al. Tissue-engineered trachea for airway reconstruction[J]. Laryngoscope, 2009, 119(11): 2118-2123.
[13]
Hong HJ, Chang JW, Park JK, et al. Tracheal reconstruction using chondrocytes seeded on a poly(l-lactic-co-glycolic acid)-fibrin/hyaluronan[J]. J Biomed Mater Res A, 2014, 102(11): 4142-4150.
[14]
Komura M, Komura H, Tanaka Y, et al. Human tracheal chondrocytes as a cell source for augmenting stenotic tracheal segments: the first feasibility study in an in vivo culture system[J]. Pediatr Surg Int, 2008, 24(10): 1117-1121.
[15]
Go T, Jungebluth P, Baiguero S, et al. Both epithelial cells and mesenchymal stem cell–derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs[J]. J Thorc Cardiovasc Surg, 2010, 139(2): 437-443.
[16]
Martlnez-Gonzalez I, Moreno R, Petriz J, et al. Engraftment potential of adipose tissue-derived human mesenchymal stem cells after transplantation in the fetal rabbit[J]. Stem Cells Dev, 2012, 21(18): 3270-3277.
[17]
Zeng Y, Rong M, Liu Y, et al. Electrophysiological characterisation of human umbilical cord blood-derived mesenchymal stem cells induced by olfactory ensheathing cell-conditioned medium[J]. Neurochem Res, 2013, 38(12): 2483-2489.
[18]
Weber B, Kehl D, Bleul U, et al. In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells[J]. J Tissue Eng Regen Med, 2013, doi: 10.1002/term.1781. [Epub ahead of print].
[19]
Baiguera S, Jungebluth P, Mazzanti B, et al. Mesenchymal stromal cells for tissue-engineered tissue and organ replacements[J]. Transpl Int, 2012, 25(4): 369-382.
[20]
Nakamura T, Sato T, Araki M, et al. In situ tissue engineering for tracheal reconstruction using a luminar remodeling type of artiflcial trachea[J]. J Thorc Cardiovasc Surg, 2009, 138(4): 811-819.
[21]
Jungebluth P, Bader A, Baiguera S, et al. The concept of in vivo airway tissue engineering[J]. Biomaterials, 2012, 33(17): 4319-4326.
[22]
Fecek C, Yao D, Kacorri A, et al. Chondrogenic derivatives of embryonic stem cells seeded into 3D polycaprolactone scaffolds generated cartilage tissue in vivo[J]. Tissue Eng Part A 2008, 14(8): 1403-1413.
[23]
Hiramatsu K, Sasagawa S, Outani H, et al. Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors[J]. J Clin Invest, 2011, 121(2): 640-657.
[24]
Jungebluth P, Moll G, Baiguera S, et al. Tissue-engineered airway: a regenerative solution[J]. Clin Pharmacol Ther, 2012, 91(1): 81-93.
[25]
Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes[J]. Biomaterials, 2011, 32(12): 3233-3243.
[26]
Zang M, Zhang Q, Chang EI, et al. Decellularized tracheal matrix scaffold for tissue engineering[J]. Plast Reconstr Surg, 2012, 130(3): 532-540.
[27]
Del Gaudio C, Baiguera S, Ajalloueian F, et al. Are synthetic scaffolds suitable for the development of clinical tissue-engineered tubular organs?[J] J Biomed Mater Res A, 2014, 102(7): 2427-2447.
[28]
Grimmer JF, Gunnlaugsson CB, Alsberg E, et al. Tracheal reconstruction using tissue-engineered cartilage[J]. Arch Otolaryngol Head Neck Surg, 2004, 130(10): 1191-1196.
[29]
Luo X, Zhou G, Liu W, et al. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage[J]. Biomed Mater, 2009, 4(2): 025006.
[30]
Tsao CK, Ko CY, Yang SR, et al. An ectopic approach for engineering a vascularized tracheal substitute [J]. Biomaterials, 2014, 35(4): 1163-1175.
[31]
Ajalloueian F, Lim ML, Lemon G, et al. Biomechanical and biocompatibility characteristics of electrospun polymeric tracheal scaffolds[J]. Biomaterials, 2014, 35(20): 5307-5315.
[32]
Komura M, Komura H, Kanamori Y, et al. An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis[J]. J Pediatr Surg, 2008, 43(12): 2141-2146.
[33]
Igai H, Chang SS, Gotoh M, et al. Tracheal cartilage regeneration and new bone formation by slow release of bone morphogenetic protein (BMP)-2[J]. ASAIO J, 2008, 54(1): 104-108.
[34]
Tana Q, Hillingera S, Blitterswijkc CAv, et al. Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction[J]. Interact Cardiovasc Thorac Surg, 2009, 8(1): 27-30.
[35]
Tan Q, Steiner R, Yang L, et al. Accelerated angiogenesis by continuous medium flow with vascular endothelial growth factor inside tissue-engineered trachea[J]. Eur J Cardiothorac Surg, 2007, 31(5): 806-811.
[36]
Ronzière MC, Perrier E, Mallein-Gerin F, et al. Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells[J]. Biomed Mater Eng, 2010, 20(3): 145-158.
[37]
Tani G, Usui N, Kamiyama M, et al. In vitro construction of scaffold-free cylindrical cartilage using cell sheet-based tissue engineering[J]. Pediatr Surg Int, 2010, 26(2): 179-185.
[38]
Lin CH, Hsu SH, Huang CE, et al. A scaffold-bioreactor system for a tissue-engineered trachea[J]. Biomaterials, 2009, 30(25): 4117-4126.
[39]
Furlani D, Li W, Pittermann E, et al. A transformed cell population derived from cultured mesenchymal stem cells has no functional effect after transplantation into the injured heart[J]. Cell Transplant, 2009, 18(3): 319-331.
[40]
Luo X, Liu Y, Zhang Z, et al. Long-term functional reconstruction of segmental tracheal defect by pedicled tissue-engineered trachea in rabbits[J]. Biomaterials, 2013, 34(13): 3336-3344.
[41]
Schanz J, Pusch J, Hansmann J, et al. Vascularised human tissue models: a new approach for the refinement of biomedical research[J]. J Biotechnol, 2010, 148(1): 56-63.
[42]
Kim JH, Kim J, Kong WH, et al. Factors affecting tissue culture and transplantation using omentum[J]. ASAIO J, 2010, 56(4): 349-355.
[43]
Baiguera S, Jungebluth P, Burns A, et al. Tissue engineered human tracheas for in vivo implantation[J]. Biomaterials, 2010, 31(34): 8931-8938.
[44]
Sun F, Pan S, Shi HC, et al. Structural integrity, immunogenicity and biomechanical evaluation of rabbit decelluarized tracheal matrix[J]. J Biomed Mater Res A, 2015, 103(4): 1509-1519.
[45]
Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway[J]. Lancet, 2008, 372(9655): 2023-2031.
[46]
Gonfiotti A, Jaus MO, Barale D, et al. The first tissue-engineered airway transplantation: 5-year follow-up results[J]. Lancet, 2014, 383(9913): 238-244.
[47]
Delaere P, Vranckx J, Verleden G, et al. Tracheal allotransplantation after withdrawal of immunosuppressive therapy[J]. N Engl J Med, 2010, 362(2): 138-145.
[48]
Laurance J. British boy receives trachea transplant built with his own stem cells[J]. BMJ, 2010, 340: c1633.
[49]
Elliott MJ, De Coppi P, Speggiorin S, et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study[J]. Lancet, 2012, 380(9846): 994-1000.
[50]
Berg M, Ejnell H, Kovacs A, et al. Replacement of a tracheal stenosis with a tissue-engineered human trachea using autologous stem cells-a case report[J]. Tissue Eng Part A, 2014, 20(1-2): 389-397.
[51]
Jungebluth P, Alici E, Baiguera S, et al. Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite a proof-of-concept study[J]. Lancet, 2011, 378(9808): 1997-2004.
[1] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[2] 关丁丁, 李伟, 孔维诗, 包郁露, 孙瑜. 负载干细胞的光交联蛋白基水凝胶在组织工程中应用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 447-452.
[3] 顾雯, 凌守鑫, 唐海利, 甘雪梅. 两种不同手术入路在甲状腺乳头状癌患者开放性根治性术中的应用比较[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 687-690.
[4] 胥韦, 刘敏, 钟樟华, 裴艳丽, 荣磊. EBUS-TBNA 联合X 线透视下经支气管肺活检术在肺门及纵隔病变中的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 680-684.
[5] 井发红, 李丽娜, 高婷, 高艳梅, 杨楠, 李卓, 慕玉东. 肺癌立体定向放疗血清SAP 和MMPs 表达及临床意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 707-713.
[6] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[7] 张卫锋, 张天翼, 赵正维, 王海强, 尹逊亮. VE /VCO2 斜率对肺癌肺叶切除术后心血管并发症的预测意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 725-730.
[8] 杨轲, 丁增巴姆, 马静, 李盼盼, 陈婷. 全程无缝隙肺康复训练在单孔胸腔镜肺叶切除术中的临床应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 801-804.
[9] 胡菊英, 李银华, 洪兰, 王宏勇, 丁先军, 李承美, 谭心海. 儿童感染大叶性肺炎与支气管肺炎临床特征分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 813-816.
[10] 钱春蕊, 周燕, 张晶, 蔡笃财, 门慧, 王松海, 黎莉, 邢龙. 高分辨率CT 与多层螺旋CT 在肺结节及早期肺癌中的应用[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 827-830.
[11] 崔伟, 李静, 陈晓明, 张靖, 邓屹, 许荣德. 载药微球支气管动脉化疗栓塞术治疗非小细胞肺癌的研究进展[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 289-295.
[12] 崔伟, 邓屹, 叶苏意, 李静, 陈晓明, 张靖, 许荣德. 载药微球支气管动脉化疗栓塞术治疗罕见非小细胞肺癌的临床疗效和安全性分析[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 303-310.
[13] 崔伟, 叶苏意, 邓屹, 陈晓明, 张靖, 李静, 许荣德. 载药微球支气管动脉化疗栓塞术治疗难治性非小细胞肺癌的临床疗效及安全性[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 311-316.
[14] 钟小军, 杨清峰, 邹忠元, 丘宁宁, 李见英, 邹四珍, 黄小琴, 郭冠华, 牛立志. 支气管镜联合数字减影血管造影在恶性气道狭窄金属支架置入中的应用[J/OL]. 中华介入放射学电子杂志, 2024, 12(04): 317-322.
[15] 游雨禾, 马钰杰, 曹文军, 薛洪省, 朴哲, 由茂端, 史晓宇, 赵志龙. 肺切除术后支气管胸膜瘘诊疗进展[J/OL]. 中华胸部外科电子杂志, 2024, 11(04): 246-253.
阅读次数
全文


摘要