[1] |
Baiguera S, D’Innocenzo B, Macchiarini P. Current status of regenerative replacement of the airway[J]. Expert Rev Respir Med, 2011, 5(4): 487-494.
|
[2] |
He X, Fu W, Zheng J. Cell sources for trachea tissue engineering past present and future[J]. Regen Med, 2012, 7(6): 851-863.
|
[3] |
Hinderer S, Schenke-Layland K. Tracheal tissue engineering:building on a strong foundation[J]. Expert Rev Med Devices, 2013, 10(1): 33-35.
|
[4] |
Ott LM, Weatherly RA, Detamore MS. Overview of tracheal tissue engineering: clinical need drives the laboratory approach[J]. Ann Biomed Eng, 2011, 39(8): 2091-2113.
|
[5] |
Hamilton N, Bullock AJ, Macneil S, et al. Tissue engineering airway mucosa: a systematic review[J]. Laryngoscope, 2014, 124(4): 961-968.
|
[6] |
Nomoto Y, Kobayashi K, Tada Y, et al. Effect of fibroblasts on epithelial regeneration on the surface of a bioengineered trachea[J]. Ann Otol Rhinol Laryngol, 2008, 117(1): 59-64.
|
[7] |
Okano W, Nomoto Y, Wada I, et al. Bioengineered trachea with fibroblasts in a rabbit model[J]. Ann Otol Rhinol Laryngol, 2009, 118(11): 796-804.
|
[8] |
Mohd-Heikal MY, Aminuddin BS, Jeevanan J, et al. Autologous implantation of bilayered tissue-engineered respiratory epithelium for tracheal mucosal regenesis in a sheep model[J]. Cells Tissues Organs, 2010, 192(5): 292-302.
|
[9] |
Kim JH, Kong WH, Kim JG, et al. Possibility of skin epithelial cell transdifferentiation in tracheal reconstruction[J]. Artif Organs, 2011, 35(2): 122-130.
|
[10] |
Komura M, Komura H, Kanamori Y, et al. An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis[J]. J Pediatr Surg, 2008, 43(12): 2141-2146.
|
[11] |
Tani G, Usui N, Kamiyama M, et al. In vitro construction of scaffold-free cylindrical cartilage using cell sheet-based tissue engineering[J]. Pediatr Surg Int, 2010, 26(2): 179-185.
|
[12] |
Weidenbecher M, Tucker HM, Gilpin DA, et al. Tissue-engineered trachea for airway reconstruction[J]. Laryngoscope, 2009, 119(11): 2118-2123.
|
[13] |
Hong HJ, Chang JW, Park JK, et al. Tracheal reconstruction using chondrocytes seeded on a poly(l-lactic-co-glycolic acid)-fibrin/hyaluronan[J]. J Biomed Mater Res A, 2014, 102(11): 4142-4150.
|
[14] |
Komura M, Komura H, Tanaka Y, et al. Human tracheal chondrocytes as a cell source for augmenting stenotic tracheal segments: the first feasibility study in an in vivo culture system[J]. Pediatr Surg Int, 2008, 24(10): 1117-1121.
|
[15] |
Go T, Jungebluth P, Baiguero S, et al. Both epithelial cells and mesenchymal stem cell–derived chondrocytes contribute to the survival of tissue-engineered airway transplants in pigs[J]. J Thorc Cardiovasc Surg, 2010, 139(2): 437-443.
|
[16] |
Martlnez-Gonzalez I, Moreno R, Petriz J, et al. Engraftment potential of adipose tissue-derived human mesenchymal stem cells after transplantation in the fetal rabbit[J]. Stem Cells Dev, 2012, 21(18): 3270-3277.
|
[17] |
Zeng Y, Rong M, Liu Y, et al. Electrophysiological characterisation of human umbilical cord blood-derived mesenchymal stem cells induced by olfactory ensheathing cell-conditioned medium[J]. Neurochem Res, 2013, 38(12): 2483-2489.
|
[18] |
Weber B, Kehl D, Bleul U, et al. In vitro fabrication of autologous living tissue-engineered vascular grafts based on prenatally harvested ovine amniotic fluid-derived stem cells[J]. J Tissue Eng Regen Med, 2013, doi: 10.1002/term.1781. [Epub ahead of print].
|
[19] |
Baiguera S, Jungebluth P, Mazzanti B, et al. Mesenchymal stromal cells for tissue-engineered tissue and organ replacements[J]. Transpl Int, 2012, 25(4): 369-382.
|
[20] |
Nakamura T, Sato T, Araki M, et al. In situ tissue engineering for tracheal reconstruction using a luminar remodeling type of artiflcial trachea[J]. J Thorc Cardiovasc Surg, 2009, 138(4): 811-819.
|
[21] |
Jungebluth P, Bader A, Baiguera S, et al. The concept of in vivo airway tissue engineering[J]. Biomaterials, 2012, 33(17): 4319-4326.
|
[22] |
Fecek C, Yao D, Kacorri A, et al. Chondrogenic derivatives of embryonic stem cells seeded into 3D polycaprolactone scaffolds generated cartilage tissue in vivo[J]. Tissue Eng Part A 2008, 14(8): 1403-1413.
|
[23] |
Hiramatsu K, Sasagawa S, Outani H, et al. Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors[J]. J Clin Invest, 2011, 121(2): 640-657.
|
[24] |
Jungebluth P, Moll G, Baiguera S, et al. Tissue-engineered airway: a regenerative solution[J]. Clin Pharmacol Ther, 2012, 91(1): 81-93.
|
[25] |
Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes[J]. Biomaterials, 2011, 32(12): 3233-3243.
|
[26] |
Zang M, Zhang Q, Chang EI, et al. Decellularized tracheal matrix scaffold for tissue engineering[J]. Plast Reconstr Surg, 2012, 130(3): 532-540.
|
[27] |
Del Gaudio C, Baiguera S, Ajalloueian F, et al. Are synthetic scaffolds suitable for the development of clinical tissue-engineered tubular organs?[J] J Biomed Mater Res A, 2014, 102(7): 2427-2447.
|
[28] |
Grimmer JF, Gunnlaugsson CB, Alsberg E, et al. Tracheal reconstruction using tissue-engineered cartilage[J]. Arch Otolaryngol Head Neck Surg, 2004, 130(10): 1191-1196.
|
[29] |
Luo X, Zhou G, Liu W, et al. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage[J]. Biomed Mater, 2009, 4(2): 025006.
|
[30] |
Tsao CK, Ko CY, Yang SR, et al. An ectopic approach for engineering a vascularized tracheal substitute [J]. Biomaterials, 2014, 35(4): 1163-1175.
|
[31] |
Ajalloueian F, Lim ML, Lemon G, et al. Biomechanical and biocompatibility characteristics of electrospun polymeric tracheal scaffolds[J]. Biomaterials, 2014, 35(20): 5307-5315.
|
[32] |
Komura M, Komura H, Kanamori Y, et al. An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis[J]. J Pediatr Surg, 2008, 43(12): 2141-2146.
|
[33] |
Igai H, Chang SS, Gotoh M, et al. Tracheal cartilage regeneration and new bone formation by slow release of bone morphogenetic protein (BMP)-2[J]. ASAIO J, 2008, 54(1): 104-108.
|
[34] |
Tana Q, Hillingera S, Blitterswijkc CAv, et al. Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction[J]. Interact Cardiovasc Thorac Surg, 2009, 8(1): 27-30.
|
[35] |
Tan Q, Steiner R, Yang L, et al. Accelerated angiogenesis by continuous medium flow with vascular endothelial growth factor inside tissue-engineered trachea[J]. Eur J Cardiothorac Surg, 2007, 31(5): 806-811.
|
[36] |
Ronzière MC, Perrier E, Mallein-Gerin F, et al. Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells[J]. Biomed Mater Eng, 2010, 20(3): 145-158.
|
[37] |
Tani G, Usui N, Kamiyama M, et al. In vitro construction of scaffold-free cylindrical cartilage using cell sheet-based tissue engineering[J]. Pediatr Surg Int, 2010, 26(2): 179-185.
|
[38] |
Lin CH, Hsu SH, Huang CE, et al. A scaffold-bioreactor system for a tissue-engineered trachea[J]. Biomaterials, 2009, 30(25): 4117-4126.
|
[39] |
Furlani D, Li W, Pittermann E, et al. A transformed cell population derived from cultured mesenchymal stem cells has no functional effect after transplantation into the injured heart[J]. Cell Transplant, 2009, 18(3): 319-331.
|
[40] |
Luo X, Liu Y, Zhang Z, et al. Long-term functional reconstruction of segmental tracheal defect by pedicled tissue-engineered trachea in rabbits[J]. Biomaterials, 2013, 34(13): 3336-3344.
|
[41] |
Schanz J, Pusch J, Hansmann J, et al. Vascularised human tissue models: a new approach for the refinement of biomedical research[J]. J Biotechnol, 2010, 148(1): 56-63.
|
[42] |
Kim JH, Kim J, Kong WH, et al. Factors affecting tissue culture and transplantation using omentum[J]. ASAIO J, 2010, 56(4): 349-355.
|
[43] |
Baiguera S, Jungebluth P, Burns A, et al. Tissue engineered human tracheas for in vivo implantation[J]. Biomaterials, 2010, 31(34): 8931-8938.
|
[44] |
Sun F, Pan S, Shi HC, et al. Structural integrity, immunogenicity and biomechanical evaluation of rabbit decelluarized tracheal matrix[J]. J Biomed Mater Res A, 2015, 103(4): 1509-1519.
|
[45] |
Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway[J]. Lancet, 2008, 372(9655): 2023-2031.
|
[46] |
Gonfiotti A, Jaus MO, Barale D, et al. The first tissue-engineered airway transplantation: 5-year follow-up results[J]. Lancet, 2014, 383(9913): 238-244.
|
[47] |
Delaere P, Vranckx J, Verleden G, et al. Tracheal allotransplantation after withdrawal of immunosuppressive therapy[J]. N Engl J Med, 2010, 362(2): 138-145.
|
[48] |
Laurance J. British boy receives trachea transplant built with his own stem cells[J]. BMJ, 2010, 340: c1633.
|
[49] |
Elliott MJ, De Coppi P, Speggiorin S, et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study[J]. Lancet, 2012, 380(9846): 994-1000.
|
[50] |
Berg M, Ejnell H, Kovacs A, et al. Replacement of a tracheal stenosis with a tissue-engineered human trachea using autologous stem cells-a case report[J]. Tissue Eng Part A, 2014, 20(1-2): 389-397.
|
[51] |
Jungebluth P, Alici E, Baiguera S, et al. Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite a proof-of-concept study[J]. Lancet, 2011, 378(9808): 1997-2004.
|