切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2016, Vol. 03 ›› Issue (04) : 234 -238. doi: 10.3877/cma.j.issn.2095-8773.2016.04.09

所属专题: 文献

综述

调节性T细胞在重症肌无力研究中的进展
徐朋亮1, 朱勇俊1, 宋阳1, 陈志明1,()   
  1. 1. 200040 上海,复旦大学附属华山医院心胸外科
  • 收稿日期:2016-03-14 出版日期:2016-11-28
  • 通信作者: 陈志明

Regulatory T cells and its research progress in myasthenia gravis

Pengliang Xu1, Yongjun Zhu1, Yang Song1, Zhiming Chen1,()   

  1. 1. Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
  • Received:2016-03-14 Published:2016-11-28
  • Corresponding author: Zhiming Chen
  • About author:
    Corresponding author: Chen Zhiming, Email:
引用本文:

徐朋亮, 朱勇俊, 宋阳, 陈志明. 调节性T细胞在重症肌无力研究中的进展[J]. 中华胸部外科电子杂志, 2016, 03(04): 234-238.

Pengliang Xu, Yongjun Zhu, Yang Song, Zhiming Chen. Regulatory T cells and its research progress in myasthenia gravis[J]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2016, 03(04): 234-238.

重症肌无力(MG)为一种由乙酰胆碱受体的抗体介导的、具有T细胞依赖性的自身免疫性疾病。目前研究发现,调节性T细胞(Treg)功能异常在多种自身免疫性疾病包括重症肌无力的发生、发展起着重要作用。文章重点介绍了Treg细胞的特点及其在重症肌无力作用机制方面的进展,旨在能够发现一种对重症肌无力和其他自身免疫性疾病有效的以异常T细胞为基础的治疗方法。

Myasthenia gravis (MG) is an antibody-mediated, T cell-dependent autoimmune disease. Recent researches have revealed that the dysfunction in the Regulatory T cell (Treg) compartment is involved in the etiology and pathogenesis of a variety of autoimmune diseases, including MG. This paper focuses on the characteristics of Treg and its mechanism of action on MG. It is hoped to pave a way that will restore self-tolerance in MG and other autoimmune diseases towards the Treg-based treatment modalities.

[1]
MeriggioliMN,SandersDB. Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity[J]. Lancet Neurol,2009,8(5):475-490.
[2]
CavalcanteP,Le PanseR,Berrih-AkninS, et al. The thymus in myasthenia gravis: Site of " innate autoimmunity" ?[J] Muscle Nerve,2011,44(4):467-484.
[3]
LindstromJ. Antibody to acetylcholine receptors in human MG[J].Int J Neurol,1980,14(1):17-24.
[4]
ShigemotoK,KuboS,MaruyamaN, et al. Induction of myasthenia by immunization against muscle-specific kinase[J]. J Clin Invest,2006,116(4):1016-1024.
[5]
夏强,刘卫彬,陈振光,等. 重症肌无力患者胸腺调节性T细胞的原位表达及意义[J]. 中华医学杂志,2009,89(43):3031-3034.
[6]
BluestoneJA,AbbasAK. Natural versus adaptive regulatory T cells[J]. Nat Rev Immunol,2003,3(3):253-257.
[7]
SakaguchiS,YamaguchiT,NomuraT, et al. Regulatory T cells and immune tolerance[J]. Cell,2008,133(5):775-787.
[8]
SakaguchiS,MiyaraM,CostantinoCM, et al. FOXP3 regulatory T cells in the human immune system[J]. Nat Rev Immunol,2010,10(7):490-500.
[9]
RudraD,DeroosP,ChaudhryA, et al. Transcription factor Foxp3 and its protein partners form a complex regulatory network[J]. Nat Immunol,2012,13(10):1010-1019.
[10]
JainN,NguyenH,ChambersC, et al. Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity[J]. Proc Natl Acad Sci U S A,2010,107(4):1524-1528.
[11]
ChanDV,GibsonHM,AufieroBM, et al. Differential CTLA-4 expression in human CD4 versus CD8 T cells is associated with increased NFAT1 and inhibition of CD4 proliferation[J]. Genes Immun,2014,15(1):25-32.
[12]
MasudaM,MatsumotoM,TanakaS, et al. Clinical implication of peripheral CD4CD25 regulatory T cells and Th17 cells in myasthenia gravis patients[J]. J Neuroimmunol,2010,225(1-2):123-131.
[13]
SakaguchiS,SakaguchiN,AsanoM, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J]. J Immunol,1995,155(3):1151-1164.
[14]
SakaguchiS,OnoM,SetoguchiR, et al. Foxp3CD25CD4 natural regulatory T cells in dominant self-tolerance and autoimmune disease[J]. Immunol Rev,2006,212:8-27.
[15]
Bekircan-KurtCE,TuncerKA,Erdem-OzdamarS, et al. The course of myasthenia gravis with systemic lupus erythematosus[J]. Eur Neurol,2014,72(5-6):326-329.
[16]
BernardC,FrihH,PasquetF, et al. Thymoma associated with autoimmune diseases: 85 cases and literature review[J]. Autoimmun Rev,2016,15(1):82-92.
[17]
LutherC,PoeschelS,VargaM, et al. Decreased frequency of intrathymic regulatory T cells in patients with myasthenia-associated thymoma[J]. J Neuroimmunol,2005,164(1-2):124-128.
[18]
SunY,QiaoJ,LuCZ, et al. Increase of circulating CD4CD25 T cells in myasthenia gravis patients with stability and thymectomy[J]. Clin Immunol,2004,112(3):284-289.
[19]
ChiLJ,WangHB,WangWZ. Impairment of circulating CD4CD25 regulatory T cells in patients with chronic inflammatory demyelinating polyradiculoneuropathy[J]. J Peripher Nerv Syst,2008,13(1):54-63.
[20]
BalandinaA,LecartS,DartevelleP, et al. Functional defect of regulatory CD4CD25 T cells in the thymus of patients with autoimmune myasthenia gravis[J]. Blood,2005,105(2):735-741.
[21]
RonchettiS,RicciE,Petrillo MG, et al. Glucocorticoid-induced tumour necrosis factor receptor-related protein: a key marker of functional regulatory T cells[J]. J Immunol Res,2015,2015:171520.
[22]
XiaoX,ShiX,FanY, et al. GITR subverts Foxp3 Tregs to boost Th9 immunity through regulation of histone acetylation[J]. Nat Commun,2015,6:8266.
[23]
庄战强,许文华,吴元波,等. 糖皮质激素对重症肌无力患者外周血调节性T细胞中Foxp3及其胞内CTLA-4表达的影响[J]. 安徽医科大学学报,2015,50(9):1297-1300.
[24]
CloughLE,WangCJ,SchmidtEM, et al. Release from regulatory T cell-mediated suppression during the onset of tissue-specific autoimmunity is associated with elevated IL-21[J]. J Immunol,2008,180(8):5393-5401.
[25]
SinghA,KamenDL. Potential benefits of vitamin D for patients with systemic lupus erythematosus[J]. Dermatoendocrinol,2012,4(2):146-151.
[26]
ChambersES,SuwannasaenD,MannEH, et al. 1alpha,25-dihydroxyvitamin D3 in combination with transforming growth factor-beta increases the frequency of Foxp3 regulatory T cells through preferential expansion and usage of interleukin-2[J]. Immunology,2014,143(1):52-60.
[27]
AskmarkH,HaggardL,NygrenI, et al. Vitamin D deficiency in patients with myasthenia gravis and improvement of fatigue after supplementation of vitamin D3: a pilot study[J]. Eur J Neurol,2012,19(12):1554-1560.
[28]
Alahgholi-HajibehzadM,OflazerP,AysalF, et al. Regulatory function of CD4CD25++ T cells in patients with myasthenia gravis is associated with phenotypic changes and STAT5 signaling: 1,25-Dihydroxyvitamin D3 modulates the suppressor activity[J]. J Neuroimmunol,2015,281:51-60.
[29]
Khoo AL,JoostenI,MichelsM, et al. 1,25-Dihydroxyvitamin D3 inhibits proliferation but not the suppressive function of regulatory T cells in the absence of antigen-presenting cells[J]. Immunology,2011,134(4):459-468.
[30]
ChambersES,SuwannasaenD,MannEH, et al. 1alpha,25-dihydroxyvitamin D3 in combination with transforming growth factor-beta increases the frequency of Foxp3 regulatory T cells through preferential expansion and usage of interleukin-2[J]. Immunology,2014,143(1):52-60.
[31]
CigerliO,ParildarH,UnalAD, et al. Vitamin D deficiency is a problem for adult out-patients? A university hospital sample in Istanbul, Turkey[J]. Public Health Nutr,2013,16(7):1306-1313.
[32]
LiQ,BarishS,OkuwaS, et al. A functionally conserved gene regulatory network module governing olfactory neuron diversity[J]. PLoS Genet,2016,12(1):e1005780.
[33]
GuillermoGR,Tellez-ZentenoJF,Weder-CisnerosN, et al. Response of thymectomy: clinical and pathological characteristics among seronegative and seropositive myasthenia gravis patients[J]. Acta Neurol Scand,2004,109(3):217-221.
[34]
HattonPD,DiehlJT,DalyBD, et al. Transsternal radical thymectomy for myasthenia gravis: a 15-year review[J]. Ann Thorac Surg,1989,47(6):838-840.
[35]
BuschC,MachensA,PichlmeierU, et al. Long-term outcome and quality of life after thymectomy for myasthenia gravis[J]. Ann Surg,1996,224(2):225-232.
[36]
FristWH,ThirumalaiS,DoehringCB, et al. Thymectomy for the myasthenia gravis patient: factors influencing outcome[J]. Ann Thorac Surg,1994,57(2):334-338.
[37]
JakubikovaM,PithaJ,MareckovaH, et al. Two-year outcome of thymectomy with or without immunosuppressive treatment in nonthymomatous myasthenia gravis and its effect on regulatory T cells[J]. J Neurol Sci,2015,358(1-2):101-106.
[38]
ZhangC,ShanJ,FengL, et al. The effects of immunosuppressive drugs on CD4CD25 regulatory T cells: a systematic review of clinical and basic research[J]. J Evid Based Med,2010,3(2):117-129.
[39]
BarratFJ,Cua DJ,BoonstraA, et al. In vitro generation of interleukin 10-producing regulatory CD4 T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines[J]. J Exp Med,2002,195(5):603-616.
[40]
XuWH,ZhangAM,RenMS, et al. Changes of Treg-associated molecules on CD4CD25 Treg cells in myasthenia gravis and effects of immunosuppressants[J]. J Clin Immunol,2012,32(5):975-983.
[1] 曹婉悦, 陆晶, 徐军明. 芳香烃受体的激活在大鼠肝移植免疫应答中的作用及机制研究[J]. 中华普通外科学文献(电子版), 2022, 16(03): 177-182.
[2] 刘桦, 陈雅峻, 龚建平. 调节性T细胞在肝移植免疫诱导及治疗中的作用[J]. 中华移植杂志(电子版), 2021, 15(04): 239-243.
[3] 练巧燕, 陈奥, 巨春蓉. 肺移植术后T细胞亚群研究进展[J]. 中华移植杂志(电子版), 2019, 13(02): 151-155.
[4] 刘康凯, 姚光辉. 补肺纳肾汤对COPD稳定期患者肺功能及外周血Treg、Th17细胞比率的影响[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 376-378.
[5] 曹玲莉, 涂平华, 吴展陵, 李新军. NK细胞、Treg细胞、T淋巴亚群在NSCLC外周血中表达及临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 55-57.
[6] 翁晓芹, 秦嘉阳, 张扬, 崔进, 沈红. HIF-1α/VEGF-VEGFR2/Nrp-1表达对NSCLC患者Treg增殖的影响[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 717-722.
[7] 孙文博, 连汝静. Th17/Treg水平对脑卒中并发肺部感染的临床分析[J]. 中华肺部疾病杂志(电子版), 2021, 14(03): 341-343.
[8] 卢燕鸣, 李亚琴, 周文静, 李小燕, 于清. 活化的Treg细胞对NKT细胞迁移的调节作用[J]. 中华肺部疾病杂志(电子版), 2019, 12(05): 601-605.
[9] 郭俊唐, 王彬, 申磊磊, 梁朝阳, 刘阳. 胸腔镜前纵隔肿物切除术两种入路方式的对比分析[J]. 中华腔镜外科杂志(电子版), 2021, 14(04): 221-225.
[10] 张思也, 侯粲, 钟燕军, 伍国宝. 脓毒症T淋巴细胞亚群免疫监测的研究进展[J]. 中华重症医学电子杂志, 2021, 07(01): 48-54.
[11] 唐荣, 李力. 妊娠期重症肌无力对母儿的影响及诊治[J]. 中华产科急救电子杂志, 2019, 08(02): 93-96.
[12] 孙志娟, 刘景峰, 张静阳, 郝洪军. 四种抗体阳性重症肌无力合并类风湿性关节炎的病例特征分析[J]. 中华诊断学电子杂志, 2021, 09(01): 30-34.
[13] 卢晓云, 俞姝含, 吴泽宇, 张其德, 吴沛瑶. CCR2、CCL2、Foxp3在结肠癌组织中的表达及其临床意义[J]. 中华胃肠内镜电子杂志, 2023, 10(01): 52-56.
[14] 张含露, 王福强, 邱光昊, 王旭阳, 李之阳, 彭磊, 王子豪, 王允. 机器人辅助经剑突下全胸腺及异位胸腺切除的技术要点及外科治疗效果[J]. 中华胸部外科电子杂志, 2022, 09(04): 223-229.
[15] 宋阳, 叶晓玲, 陈佶, 朱勇俊, 徐朋亮, 伍宁, 陈刚, 苗锋, 巫伟伟, 陈志明. 滤泡辅助性T细胞在重症肌无力伴胸腺瘤患者胸腺中的表达[J]. 中华胸部外科电子杂志, 2020, 07(03): 152-158.
阅读次数
全文


摘要