1 |
Bankier AA,MacMahon H,Colby T,et al.Fleischner Society:Glossary of Terms for Thoracic Imaging[J].Radiology,2024,310(2):e232558.
|
2 |
Siegel RL,Miller KD,Wagle NS,et al.Cancer statistics,2023[J].CA Cancer J Clin,2023,73(1):17-48.
|
3 |
Jonas DE,Reuland DS,Reddy SM,et al.Screening for Lung Cancer With Low-Dose Computed Tomography:Updated Evidence Report and Systematic Review for the US Preventive Services Task Force[J].JAMA,2021,325(10):971-987.
|
4 |
Dong S,Wang P,Abbas K.A survey on deep learning and its applications[J].Comput Sci Rev,2021,40:100379.
|
5 |
Tunali I,Gillies RJ,Schabath MB.Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine[J].Cold Spring Harb Perspect Med,2021,11(8):a039537.
|
6 |
de Margerie-Mellon C,Chassagnon G.Artificial intelligence:A critical review of applications for lung nodule and lung cancer[J].Diagn Interv Imaging,2023,104(1):11-17.
|
7 |
明佳蕾,方向明.基于人工智能的CT 肺结节检出临床应用及研究进展[J].中华放射学杂志,2019,53(6):522-525.
|
8 |
Ledley RS.Use of computers in biomedical pattern recognition[J].Adv Comput,1970,10:217-252.
|
9 |
Suzuki K,Shiraishi J,Abe H,et al.False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network[J].Acad Radiol,2005,12(2):191-201.
|
10 |
蒋希,袁奕萱,王雅萍,等.中国医学影像人工智能20 年回顾和展望[J].中国图象图形学报,2022,27(3):655-671.
|
11 |
Suzuki K.Overview of deep learning in medical imaging[J].Radiol Phys Technol,2017,10(3):257-273.
|
12 |
Russakovsky O,Deng J,Su H,et al.ImageNet Large Scale Visual Recognition Challenge[J].International Journal of Computer Vision,2015,115(3):211-252.
|
13 |
Huang G,Wei X,Tang H,et al.A systematic review and metaanalysis of diagnostic performance and physicians perceptions of artificial intelligence(AI)-assisted CT diagnostic technology for the classification of pulmonary nodules[J].J Thorac Dis,2021,13(8):4797-4811.
|
14 |
Lan CC,Hsieh MS,Hsiao JK,et al.Deep learning-based artificial intelligence improves accuracy of error-prone lung nodules[J].Int J Med Sci,2022,19(3):490-498.
|
15 |
Cao H,Liu H,Song E,et al.A Two-Stage Convolutional Neural Networks for Lung Nodule Detection[J].IEEE J Biomed Health Inform,2020,24(7):2006-2015.
|
16 |
Cui S,Ming S,Lin Y,et al.Development and clinical application of deep learning model for lung nodules screening on CT images[J].Sci Rep,2020,10(1):13657.
|
17 |
Chauvie S,De Maggi A,Baralis I,et al.Artificial intelligence and radiomics enhance the positive predictive value of digital chest tomosynthesis for lung cancer detection within SOS clinical trial[J].Eur Radiol,2020,30(7):4134-4140.
|
18 |
Hendrix W,Hendrix N,Scholten ET,et al.Deep learning for the detection of benign and malignant pulmonary nodules in non-screening chest CT scans[J].Commun Med(Lond),2023,3(1):156.
|
19 |
Wang H,Zhu H,Ding L,et al.A diagnostic classification of lung nodules using multiple-scale residual network[J].Sci Rep,2023,13(1):11322.
|
20 |
Zhao T,Qi S,Yue Y,et al.CLSSL-ResNet:Predicting malignancy of solitary pulmonary nodules from CT images by chimeric label with self-supervised learning[J].J Xray Sci Technol,2023,31(5):981-999.
|
21 |
Chae KJ,Jin GY,Ko SB,et al.Deep Learning for the Classification of Small(≤2 cm)Pulmonary Nodules on CT Imaging:A Preliminary Study[J].Acad Radiol,2020,27(4):e55-e63.
|
22 |
王峥,张洪,吕军,等.人工智能辅助诊疗系统在肺小结节诊断中的应用——附1650 例临床分析[J].中华胸心血管外科杂志,2023,39(8):466-471.
|
23 |
Huang YS,Wang TC,Huang SZ,et al.An improved 3-D attention CNN with hybrid loss and feature fusion for pulmonary nodule classification[J].Comput Methods Programs Biomed,2023,229:107278.
|
24 |
Li K,Liu K,Zhong Y,et al.Assessing the predictive accuracy of lung cancer,metastases,and benign lesions using an artificial intelligence-driven computer aided diagnosis system[J].Quant Imaging Med Surg,2021,11(8):3629-3642.
|
25 |
Herbst RS,Morgensztern D,Boshoff C.The biology and management of non-small cell lung cancer[J].Nature,2018,553(7689):446-454.
|
26 |
Chen K,Wang M,Song Z.Multi-task learning-based histologic subtype classification of non-small cell lung cancer[J].Radiol Med,2023,128(5):537-543.
|
27 |
Dunn B,Pierobon M,Wei Q.Automated Classification of Lung Cancer Subtypes Using Deep Learning and CT-Scan Based Radiomic Analysis[J].Bioengineering (Basel),2023,10(6):690.
|
28 |
Yeh YC,Nitadori J,Kadota K,et al.Using frozen section to identify histological patterns in stage I lung adenocarcinoma of ≤3 cm:accuracy and interobserver agreement[J].Histopathology,2015,66(7):922-938.
|
29 |
Tsao MS,Nicholson AG,Maleszewski JJ,et al.Introduction to 2021 WHO Classification of Thoracic Tumors[J].J Thorac Oncol,2022,17(1):e1-e4.
|
30 |
Zhang Y,Ma X,Shen X,et al.Surgery for pre- and minimally invasive lung adenocarcinoma[J].J Thorac Cardiovasc Surg,2022,163(2):456-464.
|
31 |
Saji H,Okada M,Tsuboi M,et al.Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer(JCOG0802/WJOG4607L):a multicentre,open-label,phase 3,randomised,controlled,non-inferiority trial[J].Lancet,2022,399(10335):1607-1617.
|
32 |
Wang J,Chen X,Lu H,et al.Feature-shared adaptive-boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images[J].Med Phys,2020,47(4):1738-1749.
|
33 |
Qi K,Wang K,Wang X,et al.Lung-PNet:An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT[J].AJR Am J Roentgenol,2024,222(1):e2329674.
|
34 |
Wang C,Shao J,Lv J,et al.Deep learning for predicting subtype classification and survival of lung adenocarcinoma on computed tomography[J].Transl Oncol,2021,14(8):101141.
|
35 |
Wang J,Yuan C,Han C,et al.IMAL-Net:Interpretable multitask attention learning network for invasive lung adenocarcinoma screening in CT images[J].Med Phys,2021,48(12):7913-7929.
|
36 |
Lin CY,Guo SM,Lien JJ,et al.Combined model integrating deep learning,radiomics,and clinical data to classify lung nodules at chest CT[J].Radiol Med,2024,129(1):56-69.
|
37 |
Ashraf SF,Yin K,Meng CX,et al.Predicting benign,preinvasive,and invasive lung nodules on computed tomography scans using machine learning[J].J Thorac Cardiovasc Surg,2022,163(4):1496-1505.e10.
|
38 |
潘政松,宋兰,宋伟,等.深度学习用于影像学预测肺腺癌浸润性的研究进展[J].中华放射学杂志,2023,57(9):1018-1022.
|
39 |
Pan Z,Hu G,Zhu Z,et al.Predicting Invasiveness of Lung Adenocarcinoma at Chest CT with Deep Learning Ternary Classification Models[J].Radiology,2024,311(1):e232057.
|
40 |
Moreira AL,Ocampo PSS,Xia Y,et al.A Grading System for Invasive Pulmonary Adenocarcinoma:A Proposal From the International Association for the Study of Lung Cancer Pathology Committee[J].J Thorac Oncol,2020,15(10):1599-1610.
|
41 |
Kadota K,Nitadori JI,Sima CS,et al.Tumor Spread through Air Spaces is an Important Pattern of Invasion and Impacts the Frequency and Location of Recurrences after Limited Resection for Small Stage I Lung Adenocarcinomas[J].J Thorac Oncol,2015,10(5):806-814.
|
42 |
Chae M,Jeon JH,Chung JH,et al.Prognostic significance of tumor spread through air spaces in patients with stage IA partsolid lung adenocarcinoma after sublobar resection[J].Lung Cancer,2021,152:21-26.
|
43 |
Travis WD,Eisele M,Nishimura KK,et al.The International Association for the Study of Lung Cancer (IASLC) Staging Project for Lung Cancer:Recommendation to Introduce Spread Through Air Spaces as a Histologic Descriptor in the Ninth Edition of the TNM Classification of Lung Cancer.Analysis of 4061 Pathologic Stage I NSCLC[J].J Thorac Oncol,2024,19(7):1028-1051.
|
44 |
Liu Q,Qi W,Wu Y,et al.Construction of Pulmonary Nodule CT Radiomics Random Forest Model Based on Artificial Intelligence Software for STAS Evaluation of Stage IA Lung Adenocarcinoma[J].Comput Math Methods Med,2022,2022:2173412.
|
45 |
Lin MW,Chen LW,Yang SM,et al.CT-Based deep-learning model for spread-through-air-spaces prediction in ground glasspredominant lung adenocarcinoma[J].Ann Surg Oncol,2024,31(3):1536-1545.
|
46 |
Qi L,Li X,He L,et al.Comparison of Diagnostic Performance of Spread Through Airspaces of Lung Adenocarcinoma Based on Morphological Analysis and Perinodular and Intranodular Radiomic Features on Chest CT Images[J].Front Oncol,2021,11:654413.
|
47 |
Jin W,Shen L,Tian Y,et al.Improving the prediction of Spreading Through Air Spaces (STAS) in primary lung cancer with a dynamic dual-delta hybrid machine learning model:a multicenter cohort study[J].Biomark Res,2023,11(1):102.
|
48 |
Wang C,Wu Y,Shao J,et al.Clinicopathological variables influencing overall survival,recurrence and post-recurrence survival in resected stage I non-small-cell lung cancer[J].BMC Cancer,2020,20(1):150.
|
49 |
Schuchert MJ,Normolle DP,Awais O,et al.Factors influencing recurrence following anatomic lung resection for clinical stage I non-small cell lung cancer[J].Lung Cancer,2019,128:145-151.
|
50 |
Beck KS,Gil B,Na SJ,et al.DeepCUBIT:Predicting Lymphovascular Invasion or Pathological Lymph Node Involvement of Clinical T1 Stage Non-Small Cell Lung Cancer on Chest CT Scan Using Deep Cubical Nodule Transfer Learning Algorithm[J].Front Oncol,2021,11:661244.
|
51 |
Liu K,Lin X,Chen X,et al.Development and validation of a deep learning signature for predicting lymphovascular invasion and survival outcomes in clinical stage IA lung adenocarcinoma:A multicenter retrospective cohort study[J].Transl Oncol,2024,42:101894.
|
52 |
Chen Q,Shao J,Xue T,et al.Intratumoral and peritumoral radiomics nomograms for the preoperative prediction of lymphovascular invasion and overall survival in non-small cell lung cancer[J].Eur Radiol,2023,33(2):947-958.
|
53 |
Goldstraw P,Chansky K,Crowley J,et al.The IASLC Lung Cancer Staging Project:Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer[J].J Thorac Oncol,2016,11(1):39-51.
|
54 |
Mathey-Andrews C,Abruzzo AR,Venkateswaran S,et al.Segmentectomy vs Lobectomy for Early Non-Small Cell Lung Cancer With Visceral Pleural Invasion[J].Ann Thorac Surg,2024,117(5):1007-1014.
|
55 |
Sun Q,Li P,Zhang J,et al.CT Predictors of Visceral Pleural Invasion in Patients with Non-Small Cell Lung Cancers 30 mm or Smaller[J].Radiology,2024,310(1):e231611.
|
56 |
Kim H,Goo JM,Kim YT,et al.CT-defined Visceral Pleural Invasion in T1 Lung Adenocarcinoma:Lack of Relationship to Disease-Free Survival[J].Radiology,2019,292(3):741-749.
|
57 |
Choi H,Kim H,Hong W,et al.Prediction of visceral pleural invasion in lung cancer on CT:deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs[J].Eur Radiol,2021,31(5):2866-2876.
|
58 |
Lin X,Liu K,Li K,et al.A CT-based deep learning model:visceral pleural invasion and survival prediction in clinical stage IA lung adenocarcinoma[J].iScience,2024,27(1):108712.
|
59 |
Wang Y,Lyu D,Hu S,et al.Nomogram using intratumoral and peritumoral radiomics for the preoperative prediction of visceral pleural invasion in clinical stage IA lung adenocarcinoma[J].J Cardiothorac Surg,2024,19(1):307.
|
60 |
Tian W,Yan Q,Huang X,et al.Predicting occult lymph node metastasis in solid-predominantly invasive lung adenocarcinoma across multiple centers using radiomics-deep learning fusion model[J].Cancer Imaging,2024,24(1):8.
|
61 |
Wang C,Wu Y,Shao J,et al.Clinicopathological variables influencing overall survival,recurrence and post-recurrence survival in resected stage I non-small-cell lung cancer[J].BMC Cancer,2020,20(1):150.
|
62 |
Zhao X,Wang X,Xia W,et al.A cross-modal 3D deep learning for accurate lymph node metastasis prediction in clinical stage T1 lung adenocarcinoma[J].Lung Cancer,2020,145:10-17.
|
63 |
Zhang H,Liao M,Guo Q,et al.Predicting N2 lymph node metastasis in presurgical stage I-II non-small cell lung cancer using multiview radiomics and deep learning method[J].Med Phys,2023,50(4):2049-2060.
|
64 |
Ma X,Xia L,Chen J,et al.Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma:comparison with radiomics signature and clinical-semantic model[J].Eur Radiol,2023,33(3):1949-1962.
|
65 |
Le NQK,Kha QH,Nguyen VH,et al.Machine Learning-Based Radiomics Signatures for EGFR and KRAS Mutations Prediction in Non-Small-Cell Lung Cancer[J].Int J Mol Sci,2021,22(17):9254.
|
66 |
Kim S,Lim JH,Kim CH,et al.Deep learning-radiomics integrated noninvasive detection of epidermal growth factor receptor mutations in non-small cell lung cancer patients[J].Sci Rep,2024,14(1):922.
|
67 |
Wang S,Yu H,Gan Y,et al.Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer:a multicohort study[J].Lancet Digit Health,2022,4(5):e309-e319.
|
68 |
Quanyang W,Yao H,Sicong W,et al.Artificial intelligence in lung cancer screening:Detection,classification,prediction,and prognosis[J].Cancer Med,2024,13(7):e7140.
|
69 |
Huang S,Yang J,Shen N,et al.Artificial intelligence in lung cancer diagnosis and prognosis:Current application and future perspective[J].Semin Cancer Biol,2023,89:30-37.
|
70 |
Zhang C,Xu J,Tang R,et al.Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment[J].J Hematol Oncol,2023,16(1):114.
|