切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2018, Vol. 05 ›› Issue (04) : 254 -260. doi: 10.3877/cma.j.issn.2095-8773.2018.04.11

所属专题: 文献

综述

恶性胸膜间皮瘤免疫检查点抑制剂临床治疗进展
宁岩1, 王丹云2,()   
  1. 1. 250013 山东大学附属济南市中心医院泌尿外科
    2. 250013 山东大学附属济南市中心医院普胸外科
  • 收稿日期:2018-08-25 出版日期:2018-11-28
  • 通信作者: 王丹云

Progress in clinical researches of immunotherapy for malignant pleural mesothelioma in regards of immunological checkpoint inhibitor

Yan Ning1, Danyun Wang2,()   

  1. 1. Department of Urology Surgery, Jinan Center Hospital Affiliated to Shandong University, Jinan 250013, China
    2. Department of General Thoracic Surgery, Jinan Center Hospital Affiliated to Shandong University, Jinan 250013, China
  • Received:2018-08-25 Published:2018-11-28
  • Corresponding author: Danyun Wang
  • About author:
    Corresponding author: Wang Danyun, E-mail:
引用本文:

宁岩, 王丹云. 恶性胸膜间皮瘤免疫检查点抑制剂临床治疗进展[J]. 中华胸部外科电子杂志, 2018, 05(04): 254-260.

Yan Ning, Danyun Wang. Progress in clinical researches of immunotherapy for malignant pleural mesothelioma in regards of immunological checkpoint inhibitor[J]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2018, 05(04): 254-260.

恶性胸膜间皮瘤(MPM)是一种主要与石棉暴露相关的罕见的高度侵袭性肿瘤,尽管应用不同的方式治疗(如化疗、放疗和手术)患者的疗效仍很差,预后也极差。近年来免疫治疗逐渐成为肿瘤治疗的热点,突破性进展是发现阻断T细胞免疫检测点分子可激活T细胞对肿瘤细胞的杀伤作用。免疫检查点抑制剂改变了肿瘤治疗的临床实践。2011年,CTLA-4抑制剂易普利姆玛(ipilimumab)获得美国食品药品监督管理局(FDA)的批准,成为首个上市的免疫检查点抑制剂。2014年,纳武单抗(nivolumab)获准成为全球首个上市的PD-1抑制剂。之后数年内,包括PD-1/PD-L1抗体在内的多个免疫检查点抑制剂获准用于包括非小细胞肺癌、胃癌和肝癌等在内的多个癌种的适应证。从DETERMINE研究、KEYNOTE-028研究到The PROMISE-Meso研究,都显示免疫检查点抑制剂单药对MPM治疗具有临床疗效和较好的安全性。免疫检查点抑制剂作为一线治疗与化疗的对比研究也在进行中,联合治疗(包括联合应用免疫检查点抑制剂和免疫检查点抑制剂联合化疗)的研究也在不断开展。免疫检查点抑制剂的生物标志物的研究推动了MPM的精准免疫治疗。

Malignant pleural mesohelioma is a rare type of highly invasive cancer that is mainly related to asbestos exposure. Despite application of different modalities such as chemotherapy, radiotherapy and surgery, the therapies remain ineffective.and the prognoses remain very poor. Immunotherapy has gradually become a hot spot in cancer treatment in recent years. The breakthrough finding is that blocking T cell immunologic checkpoint molecules can reactivate the killing effect of T cells on tumor cells. Immunological checkpoint inhibitors have changed the clinical practice of cancer therapy. In 2011, the CTLA-4 inhibitor ipilimumab was approved by the US FDA and became the first immune checkpoint inhibitor in market. In 2014, nivolumab was approved to become the world's first PD-1 inhibitor to open to market. Several years later, multiple immune checkpoint inhibitors, including PD-1/PD-L1 antibodies, were approved to be adaptable to multiple cancers, including non-small cell lung cancer, gastric cancer, and liver cancer. From the study of DETERMINE, KEYNOTE-028 to the PROMISE-Meso study, immune checkpoint blockades monotherapy has been proved to be effective and relatively safe for the treatment of MPM. A comparative study of immunological checkpoint inhibitors as first-line treatment and chemotherapy is also under way, combined treatment (including the combination of immunological checkpoint inhibitors treatment and chemotherapy) research is also ongoing. The study of biomarkers of immune checkpoint inhibitors has promoted the precise immunotherapy of MPM.

9
Arce Vargas F, Furness AJS, Litchfield K, et al. Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies[J]. Cancer Cell, 2018,33(4):649-663.e644.
10
Romano E, Kusio-Kobialka M, Foukas PG, et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients[J]. Proc Natl Acad Sci U S A, 2015,112(19):6140-6145.
11
Wei SC, Levine JH, Cogdill AP, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade[J]. Cell, 2017,170(6):1120-1133, e1117.
12
Wolchok JD, Weber JS, Maio M, et al. Four-year survival rates for patients with metastatic melanoma who received ipilimumab in phase Ⅱ clinical trials[J]. Ann Oncol, 2013,24(8):2174-2180.
13
Ribas A, Hauschild A, Kefford R, et al. Phase Ⅲ,open-label, randomized, comparative study of tremelimumab (CP-675,206) and chemotherapy (temozolomide [TMZ] or dacarbazine [DTIC]) in patients with advanced melanoma[J]. J Clin Oncol, 2008,26(15):431-436.
14
Calabro L, Morra A, Fonsatti E, et al. Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: an open-label, single-arm, phase 2 trial[J]. Lancet Oncol, 2013,14(11):1104-1111.
15
Calabro L, Morra A, Fonsatti E, et al. Efficacy and safety of an intensified schedule of tremelimumab for chemotherapy-resistant malignant mesothelioma: an open-label, single-arm, phase 2 study[J]. Lancet Respir Med, 2015,3(4):301-309.
16
Maio M, Scherpereel A, Calabro L, et al. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): a multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial[J]. Lancet Oncol, 2017,18(9):1261-1273.
17
Mansfield AS, Roden AC, Peikert T, et al. B7-H1 expression in malignant pleural mesothelioma is associated with sarcomatoid histology and poor prognosis[J]. J Thorac Oncol, 2014,9(7):1036-1040.
18
Reck M, Rodríguezabreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer.[J]. N Engl J Med, 2016, 375(19):1823.
19
Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study[J]. Lancet Oncology, 2016, 17(11):1497-1508.
20
Alley EW, Lopez J, Santoro A, et al. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): preliminary results from a non-randomised, open-label, phase 1b trial[J]. Lancet Oncol, 2017,18(5):623-630.
21
Quispel-Janssen J, Zago G, Schouten R, et al. OA13.01 A phase Ⅱ study of nivolumab in malignant pleural mesothelioma (NivoMes): with translational research (TR) biopies[J]. J Thorac Oncol,2017,12(1):S292-S293.
22
Goto Y, Okada M, Kijima T, et al. MA 19.01 A phase Ⅱ study of nivolumab: a multicenter, open-label, single arm study in malignant pleural mesothelioma (MERIT)[J]. J Thorac Oncol,2017,12(11):S1883.
23
Hassan R, Thomas A, Patel M, et al. 3110 Safety and clinical activity of avelumab (MSB0010718C), an anti-PD-L1 antibody, in patients with advanced, unresectable mesothelioma: a phase IB trial[J]. Eur J Cancer, 2015,51:S639-S639.
24
Petrella TM, Robert C, Richtig E, et al. Patient-reported outcomes in KEYNOTE-006, a randomised study of pembrolizumab versus ipilimumab in patients with advanced melanoma[J]. Eur J Cancer, 2017, 86:115.
25
Calabrò L, Morra A, Giannarelli D, et al. MA 19.02 tremelimumab plus durvalumab in first- or second-line mesothelioma patients: final analysis of the NIBIT-MESO-1 study[J]. J Thorac Oncol,2017,12(11):2017:S1883.
26
Disselhorst M, Harms E, Tinteren HV, et al. OA 02.02 ipilimumab and nivolumab in the treatment of recurrent malignant pleural mesothelioma: a phase Ⅱ study[J]. J Thorac Oncol, 2017,12(11):S1746.
27
Scherpereel A, Mazieres J, Greillier L, et al. Second- or third-line nivolumab (Nivo) versus nivo plus ipilimumab (Ipi) in malignant pleural mesothelioma (MPM) patients: Results of the IFCT-1501 MAPS2 randomized phase Ⅱ trial[J]. J Clin Oncol, 2017,35(18_suppl):LBA8507-LBA8507.
28
Zalcman G, Peters S, Mansfield AS, et al. Checkmate 743: A phase 3, randomized, open-label trial of nivolumab (nivo) plus ipilimumab (ipi) vs pemetrexed plus cisplatin or carboplatin as first-line therapy in unresectable pleural mesothelioma[J]. J Clin Oncol, 2017,35(15_suppl):TPS8581-TPS8581.
29
Langer CJ, Gadgeel SM, Borghaei H, et al. Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study[J]. Lancet Oncol, 2016, 17(11):1497-1508.
30
Nowak A, Kok P-S, Livingstone A, et al. P2.06-025 DREAM- A phase 2 trial of duRvalumab with first line chEmotherApy in mesothelioma with a safety run in[J]. J Thorac Oncol,12(1):S1086-S1087.
31
Francisco L, Salinas V, Brown K, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells[J]. Clin Immunol, 2009, 131(13):S41-S41.
32
Chauvin J M, Pagliano O, Fourcade J, et al. TIGIT and PD-1 impair tumor antigen–specific CD8 T cells in melanoma patients[J]. J Clin Invest, 2015, 125(5):2046-2058.
33
Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition[J]. N Engl J Med, 2017,377(25):2500-2501.
34
Goodman AM, Kato S, Bazhenova L, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers[J]. Mol Cancer Ther, 2017,16(11):2598-2608.
35
Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. N Engl J Med, 2015,372(26):2509-2520.
36
Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528):568-571.
37
Chen DS, Mellman I. Elements of cancer immunity and the cancer–immune set point[J]. Nature, 2017, 541(7637):321-330.
38
Kluger H, Zito C R, Barr M, et al. Characterization of PD-L1 expression and associated T cell infiltrates in metastatic melanoma samples from variable anatomic sites[J]. Clin Cancer Res, 2015, 21(13):3052-3060.
1
Remon J, Reguart N, Corral J, et al. Malignant pleural mesothelioma: new hope in the horizon with novel therapeutic strategies[J]. Cancer Treat Rev, 2015,41(1):27-34.
2
Vogelzang NJ, Rusthoven JJ, Symanowski J, et al. Phase Ⅲ study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma[J]. J Clin Oncol, 2003,21(14):2636-2644.
3
Mansfield AS, Roden AC, Peikert T, et al. B7-H1 expression in malignant pleural mesothelioma is associated with sarcomatoid histology and poor prognosis[J]. J Thorac Oncol, 2014,9(7):1036-1040.
39
Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy[J]. Clin Cancer Res, 2014, 20(19):5064-5074.
4
Chee SJ, Lopez M, Mellows T, et al. Evaluating the effect of immune cells on the outcome of patients with mesothelioma[J]. Br J Cancer, 2017,117(9):1341-1348.
5
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012,12(4):252-264.
6
Chen X, Fosco D, Kline DE, et al. PD-1 regulates extrathymic regulatory T-cell differentiation[J]. Eur J Immunol, 2014,44(9):2603-2616.
7
Mckinney EF, Lee JC, Jayne DR, et al. T-cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection[J]. Nature, 2015,523(7562):612-616.
8
Haanen JB, Robert C. Immune Checkpoint Inhibitors[J]. Der Onkologe, 2015,42(1):1-10.
[1] 陈静红, 尹如铁. 免疫治疗和靶向治疗在阴道黑色素瘤的探索性研究[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(01): 1-6.
[2] 王俊旗, 徐锋. 程序性死亡受体1及其配体PD-L1、细胞毒性T淋巴细胞相关抗原4抑制剂在晚期肝癌治疗中的进展[J]. 中华普通外科学文献(电子版), 2021, 15(04): 304-308.
[3] 刘恒, 侯宇川. 膀胱癌新型灌注药物的研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 445-451.
[4] 王秀清, 诸葛金科, 杨明星, 董文. ICIs治疗肺癌并发肺气肿致免疫相关性肺炎的临床分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 400-402.
[5] 杨秀君, 崔梦莹, 张丹, 曲仙智, 苗云皓, 盛基尧, 郑戈, 刘水, 张学文. 信迪利单抗联合仑伐替尼成功转化治疗不可切除肝癌一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 581-584.
[6] 蔡晨, 龚伟. 免疫治疗在胆道肿瘤中的应用现状及展望[J]. 中华肝脏外科手术学电子杂志, 2023, 12(02): 162-166.
[7] 吕靖芳, 黄海洋, 刘恩瑞, 庄孟, 王锡山. PD-1抗体/PD-L1抗体在结直肠癌治疗中的应用现状及展望[J]. 中华结直肠疾病电子杂志, 2023, 12(01): 70-74.
[8] 苏涛. 免疫检查点抑制剂相关肾脏损伤[J]. 中华肾病研究电子杂志, 2021, 10(06): 301-305.
[9] 梁文龙, 曹杰, 黄庆, 林泳, 黄红丽, 杨平, 李冠炜, 胡鹤. 信迪利单抗联合瑞戈非尼治疗晚期结直肠癌的疗效与安全性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 409-413.
[10] 张兰, 李胜棉. 转移性结直肠癌免疫检查点抑制剂治疗研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(11): 805-813.
[11] 胡冬至, 孔大陆. 结直肠癌免疫检查点抑制剂研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(09): 712-715.
[12] 冷雪峰, 韩泳涛. 恶性胸膜间皮瘤:刀尖上的生存[J]. 中华胸部外科电子杂志, 2022, 09(04): 208-211.
[13] 刘青, 林瑾仪, 刘天舒, 余一祎. 食管癌患者免疫相关性心肌炎的诊治经验[J]. 中华胸部外科电子杂志, 2022, 09(02): 118-122.
[14] 喻泊遥, 刘智超, 潘杰, 姜超, 张龙, 李志刚. 食管癌PD-1/PD-L1抑制剂的生物标志物:进展与挑战[J]. 中华胸部外科电子杂志, 2022, 09(02): 111-117.
[15] 金刚, 姚可盈, 神兴伟, 马龙, 朱自江. PD-1/PD-L1免疫检查点抑制剂与多西他赛治疗非小细胞肺癌有效性的系统评价与荟萃分析[J]. 中华胸部外科电子杂志, 2021, 08(04): 239-246.
阅读次数
全文


摘要