切换至 "中华医学电子期刊资源库"

中华胸部外科电子杂志 ›› 2019, Vol. 06 ›› Issue (01) : 63 -67. doi: 10.3877/cma.j.issn.2095-8773.2019.01.013

所属专题: 机器人专题 机器人手术 文献

机器人辅助微创食管切除术·综述

机器人辅助微创食管切除术的学习曲线分析
杨洋1, 郭旭峰1, 李斌1, 张晓彬1, 茅腾1, 孙益峰1, 李志刚1,()   
  1. 1. 200030 上海交通大学附属胸科医院胸外科 上海交通大学食管疾病诊治中心
  • 收稿日期:2018-12-26 出版日期:2019-02-28
  • 通信作者: 李志刚

Learning curve analysis of robot-assisted minimally invasive esophagectomy

Yang Yang1, Xufeng Guo1, bin Li1, Xiaobing Zhang1, Teng Mao1, Yifeng Sun1, Zhigang Li1,()   

  1. 1. Department of Thoracic Surgery, Section of Esophageal Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
  • Received:2018-12-26 Published:2019-02-28
  • Corresponding author: Zhigang Li
  • About author:
    Corresponding author: Li Zhigang, Email:
引用本文:

杨洋, 郭旭峰, 李斌, 张晓彬, 茅腾, 孙益峰, 李志刚. 机器人辅助微创食管切除术的学习曲线分析[J]. 中华胸部外科电子杂志, 2019, 06(01): 63-67.

Yang Yang, Xufeng Guo, bin Li, Xiaobing Zhang, Teng Mao, Yifeng Sun, Zhigang Li. Learning curve analysis of robot-assisted minimally invasive esophagectomy[J]. Chinese Journal of Thoracic Surgery(Electronic Edition), 2019, 06(01): 63-67.

近年来随着达芬奇机器人技术在国内外的兴起,其被应用作为食管癌根治术的微创手段,具有广阔前景的同时也对胸外科主刀医师的水平提出更高的挑战。目前关于达芬奇机器人系统用于食管癌根治术治疗的报道不多,对其学习曲线研究的报道更少。该文旨在通过对目前机器人辅助微创食管切除术(RAMIE)学习曲线相关的研究报道进行总结,探讨胸外科医师开展RAMIE的学习曲线特征,用以指导机器人手术的开展。

With the rapid development of DaVinci robot technology worldwide, it has been applied as a minimally invasive approach for esophagectomy in recent years. Despite the broad prospects of this type of surgery, it also brought greater challenge to thoracic surgeons. Until now, there are few reports on the DaVinci robotic system for esophagectomy , even fewer on its learning curve. The aim of this study was to summarize the research reports and explore the characteristics of learning curve for robot-assisted minimally invasive esophagectomy(RAMIE), which can be applied to guide the application of robotic surgery.

表1 机器人辅助微创食管切除术(RAMIE)学习曲线的研究进展
1
刘晟,仇明,江道振,等. 微创手术学习曲线的新概念与临床意义[J]. 中国微创外科杂志,2008, 8(1): 5-6.
2
Hernandez JM, Dimou F, Weber J, et al. Defining the learning curve for robotic-assisted esophagogastrectomy[J]. J Gastrointest Surg, 2013, 17(8): 1346-1351.
3
Kunisaki C, Makino H, Yamamoto N, et a1. Learning curve for laparoscopy-assisted distal gastrectomy with regional lymph node dissection for early gastric cancer[J]. Surg Laparosc Endosc Percutan Tech, 2008, 18(3): 236-241.
4
Kim MC, Jung GJ, Kim HH. Learning curve of laparoscopy-assisted distal gastrectomy with systemic lymphadenectomy for early gastric cancer[J]. World J Gastroenterol, 2005, 11(47): 7508-7511.
5
Abbott A, Shridhar R, Hoffe S, et al. Robotic assisted Ivor Lewis esophagectomy in the elderly patient[J]. J Gastrointest Oncol, 2015, 6(1): 31-38
6
Sarkaria IS, Rizk NP, Grosser R, et al. Attaining Proficiency in Robotic-Assisted Minimally Invasive Esophagectomy While Maximizing Safety During Procedure Development[J]. Innovations (Phila), 2016, 11(4): 268-273.
7
Grimminger PP, Tagkalos E, Hadzijusufovic E, et al. Change from hybrid to fully minimally invasive and robotic esophagectomy is possible without compromises[J]. Thorac Cardiovasc Surg, 2018. doi: 10.1055/s-0038-1670664.
8
Park SY, Kim DJ, Kang DR, et al. Learning curve for robotic esophagectomy and dissection of bilateral recurrent laryngeal nerve nodes for esophageal cancer[J]. Dis Esophagus, 2017, 30(12): 1-9.
9
Park S, Hyun K, Lee HJ, et al. A study of the learning curve for robotic oesophagectomy for oesophageal cancer[J]. Eur J Cardiothorac Surg, 2018, 53(4): 862-870.
10
van der Sluis PC, Ruurda JP, van der Horst S, et al. Learning Curve for Robot-Assisted Minimally Invasive Thoracoscopic Esophagectomy: Results From 312 Cases[J]. Ann Thorac Surg, 2018, 106(1): 264-271.
11
杨煜,张晓彬,孙益峰,等. 机器人辅助食管癌的微创外科切除:上海市胸科医院75例临床报道[J].中华胸部外科电子杂志,2016, 3(3): 151-155.
12
Zhang H, Chen L, Wang Z, et al. The Learning Curve for Robotic McKeown Esophagectomy in Patients with Esophageal Cancer[J]. Ann Thorac Surg, 2018, 105(4): 1024-1030.
13
刘小龙,熊磊,丛壮壮,等. 达芬奇机器人在食管癌根治术中学习曲线的研究[J]. 医学研究生学报,2018, 31(8): 831-834.
14
Ahlberg G, Kruuna O, Leijonmarck CE, et al. Is the learning curve for laparoscopic fundoplication determined by the teacher or the pupil? [J] Am J Surg, 2005, 189(2): 184-189.
15
稽武,胡新勇,黎介寿. 手术机器人的应用进展和前景展望[J]. 医学研究生学报,2010, 23(9): 994-998.
16
Schreuder HW, Wolswijk R, Zweemer RP, et al. Training and learning robotic surgery, time for a more structured approach: a systematic review[J]. BJOG, 2012, 119(2): 137-149.
17
Gurusamy K, Aggarwal R, Palanivelu L, et al. Systematic review of randomized controlled trials on the effectiveness of virtual reality training for laparoscopic surgery[J]. Br J Surg, 2008, 95(9): 1088-1097.
18
Kelly DC, Margules AC, Kundavaram CR, et al. Face, content, and construct validation of the da Vinci Skills Simulator[J]. Urology, 2012, 79(5): 1068-1072.
19
Abboudi H, Khan MS, Aboumarzouk O, et al. Current status of validation for robotic surgery simulators - a systematic review[J]. BJU Int, 2013, 111(2): 194-205.
20
Patel HRH, Linares A, Joseph JV. Robotic and laparoscopic surgery: cost and training[J]. Surg Oncol, 2009, 18(3): 242-246.
21
Schachner T, Bonaros N, Wiedemann D, et al. Training surgeons to perform robotically assisted totally endoscopic coronary surgery[J]. Ann Thorac Surg, 2009, 88(2): 523-527.
22
Rashid TG, Kini M, Ind TE. Comparing the learning curve for robotically assisted and straight stick laparoscopic procedures in surgical novices[J]. Int J Med Robot, 2010, 6(3): 306-310.
23
Arain NA, Dulan G, Hogg DC, et al. Comprehensive proficiency-based inanimate training for robotic surgery: reliability, feasibility, and educational benefit[J]. Surg Endosc, 2012, 26(10): 2740-2745.
24
Mirheydar H, Jones M, Koeneman KS, et al. Robotic surgical education: a collaborative approach to training postgraduate urologists and endourology fellows[J]. JSLS, 2009, 13(3): 287-292.
25
Marengo F, Larraín D, Babilonti L, et al. Learning experience using the double-console da Vinci surgical system in gynecology: a prospective cohort study in a University hospital[J]. Arch Gynecol Obstet, 2012, 285(2): 441-445.
[1] 黄泽, 张梓榆, 杨青宇, 赖声清, 李海燕. 乳腺腔镜手术临床应用现状及训练路径[J]. 中华乳腺病杂志(电子版), 2023, 17(02): 122-125.
[2] 方昌华, 杜霖, 陈鑫楠, 王昊, 王文帝, 张成伟, 秦海翔, 邱雪峰, 庄君龙, 徐林峰, 郭宏骞, 张古田. 以累积和分析法研究保留耻骨后间隙机器人辅助根治性前列腺切除术的学习曲线[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 319-325.
[3] 高加林, 曹亚娟. 腹腔镜解剖性肝右后叶切除治疗食管癌根治术后孤立性肝转移[J]. 中华腔镜外科杂志(电子版), 2023, 16(04): 239-242.
[4] 施我大, 张亚军, 施展, 吴纪祥, 常绘文, 易忠权, 梁晓东, 周晶晶, 宋建祥. Treg细胞通过上调TGF-β1和B7-H3表达促进食管癌细胞增殖、迁移和侵袭[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 65-75.
[5] 张智春, 周远达, 曾庆昇, 李鹏, 杨红杰, 孙轶. 以CUSUM方法分析腹腔镜层面优先入路直肠癌侧方淋巴结清扫术的学习曲线[J]. 中华结直肠疾病电子杂志, 2023, 12(03): 200-206.
[6] 侯超, 潘美辰, 吴文明, 黄兴广, 李翔, 程凌雪, 朱玉轩, 李文波. 早期食管癌及上皮内瘤变内镜黏膜下剥离术后食管狭窄的危险因素[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 383-387.
[7] 单秋洁, 孙立柱, 徐宜全, 王之霞, 徐妍, 马浩, 刘田田. 中老年食管癌患者调强放射治疗期间放射性肺损伤风险模型构建及应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 388-393.
[8] 苏鹏, 吕会来, 温士旺, 黄超, 张缜, 田子强. 全腔镜下食管癌根治术围手术期呼吸系统并发症发生的危险因素分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 294-298.
[9] 曹旬旬, 费素娟. 食管癌患者肿瘤组织CXCL5和CXCR2的表达与病情和预后的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 299-304.
[10] 屠松霞, 郑红艳, 朱姝, 徐夏君. 食管癌术后患者肠内营养耐受不良的影响因素及列线图风险模型[J]. 中华消化病与影像杂志(电子版), 2023, 13(02): 73-77.
[11] 陈柯豫, 黄艳齐, 张玲利. 同时性多发早期食管癌及高级别上皮内瘤变的危险因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(05): 524-528.
[12] 秦建军, 郭旭峰, 胡杨, 李向楠, 李卓毅, 林江波, 梅新宇, 唐鹏, 王长春, 王枫, 王洪琰, 尹俊, 袁勇, 赵晋波, 李志刚, 李印. 日本2022版食管癌诊治指南在中国的接受度——中国红杉树专家调研[J]. 中华胸部外科电子杂志, 2023, 10(04): 195-199.
[13] 李正龙, 赵永生, 罗钶鑫, 彭忠勤. 胸腔镜切除治疗全内脏反位合并食管癌手术1例并文献复习[J]. 中华胸部外科电子杂志, 2023, 10(04): 234-237.
[14] 孙天宇, 王如文, 蒋彬. 食管碰撞癌1例[J]. 中华胸部外科电子杂志, 2023, 10(04): 238-240.
[15] 李国仁, 戴建华. 我国食管癌治疗理念与模式的沿革和进展[J]. 中华胸部外科电子杂志, 2023, 10(02): 117-125.
阅读次数
全文


摘要